Detecting Multiple Stochastic Network Motifs in Network Data

  • Kai Liu
  • William K. Cheung
  • Jiming Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7302)


Network motif detection methods are known to be important for studying the structural properties embedded in network data. Extending them to stochastic ones help capture the interaction uncertainties in stochastic networks. In this paper, we propose a finite mixture model to detect multiple stochastic motifs in network data with the conjecture that interactions to be modeled in the motifs are of stochastic nature. Component-wise Expectation Maximization algorithm is employed so that both the optimal number of motifs and the parameters of their corresponding probabilistic models can be estimated. For evaluating the effectiveness of the algorithm, we applied the stochastic motif detection algorithm to both synthetic and benchmark datasets. Also, we discuss how the obtained stochastic motifs could help the domain experts to gain better insights on the over-represented patterns in the network data.


Stochastic motifs finite mixture models expectation maximization algorithm social networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shen-Orr, S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcrip- tional regulation network of Escherichia coli. Nature Genetics 31(1), 64–68 (2002)CrossRefGoogle Scholar
  2. 2.
    Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovski, D., Alon, U.: Network motifs: Simple building blocks of complex networks. Science 298(5594), 824–827 (2002)CrossRefGoogle Scholar
  3. 3.
    Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer, M., Alon, U.: Superfamilies of evolved and designed networks. Science 303(5663), 1538–1541 (2004)CrossRefGoogle Scholar
  4. 4.
    Mangan, S., Alon, U.: Structure and function of the feedforward loop network motif. PNAS USA 100(21), 11980–11985 (2003)CrossRefGoogle Scholar
  5. 5.
    Berg, J., Michael, L.: Local graph alignment and motif search in biological networks. PNAS USA 101(41), 14689–14694 (2004)CrossRefGoogle Scholar
  6. 6.
    Jiang, R., Tu, Z., Chen, T., Sun, F.: Network motif identification in stochastic networks. PNAS USA 103(25), 9404–9409 (2006)CrossRefGoogle Scholar
  7. 7.
    Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20(11), 1746–1758 (2004)CrossRefGoogle Scholar
  8. 8.
    Juszczyszyn, K., Kazienko, P., Musiał, K.: Local Topology of Social Network Based on Motif Analysis. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part II. LNCS (LNAI), vol. 5178, pp. 97–105. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Musial, K., Juszczyszyn, K.: Motif-based analysis of social position influence on interconnection patterns in complex social network. In: Proceedings of First Asian Conference on Intelligent Information and Database Systems, pp. 34–39 (2009)Google Scholar
  10. 10.
    Jiang, R., Chen, T., Sun, F.: Bayesian models and Gibbs sampling strategies for local graph alignment and motif identification in stochastic biological networks. Communications in Information & Systems 9(4), 347–370 (2009)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Liu, K., Cheung, W.K., Liu, J.: Stochastic network motif detection in social media. In: Proceedings of 2011 ICDM Workshop on Data Mining in Networks (2011)Google Scholar
  12. 12.
    McKay, B.: Nauty user’s guide (version 2.4). Australian National University (2007)Google Scholar
  13. 13.
    Garey, M., Johnson, D.: Computers and intractability: A guide to the theory of np-completeness. Freeman San Francisco (1979)Google Scholar
  14. 14.
    Huan, J., Wang, W., Prins, J.: Efficient mining of frequent subgraphs in the presence of isomorphism. In: Proceedings of 2003 IEEE ICDM, pp. 549–552 (2003)Google Scholar
  15. 15.
    Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. of the Royal Statistical Society. Series B 39(1), 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Figueiredo, M., Jain, A.: Unsupervised learning of finite mixture models. IEEE Transactions on PAMI 24(3), 381–396 (2002)CrossRefGoogle Scholar
  17. 17.
    Wallace, C., Dowe, D.: Minimum message length and kolmogorov complexity. The Computer Journal 42(4), 270–283 (1999)zbMATHCrossRefGoogle Scholar
  18. 18.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In: Proceedings of the 28th International Conference on Human Factors in Computing Systems, pp. 1361–1370 (2010)Google Scholar
  19. 19.
    Leskovec, J., Adamic, L., Huberman, B.: The dynamics of viral marketing. ACM Transactions on the Web 1(1), 5–44 (2007)CrossRefGoogle Scholar
  20. 20.
    Kumar, N., Satoor, S., Buck, I.: Fast parallel expectation maximization for gaussian mixture models on gpus using cuda. In: 11th International Conference on High Performance Computing and Communications, pp. 103–109 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kai Liu
    • 1
  • William K. Cheung
    • 1
  • Jiming Liu
    • 1
  1. 1.Department of Computer ScienceHong Kong Baptist UniversityKowloon TongHong Kong

Personalised recommendations