Advertisement

Finding Collections of k-Clique Percolated Components in Attributed Graphs

  • Pierre-Nicolas Mougel
  • Christophe Rigotti
  • Olivier Gandrillon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7302)

Abstract

In this paper, we consider graphs where a set of Boolean attributes is associated to each vertex, and we are interested in k-clique percolated components (components made of overlapping cliques) in such graphs. We propose the task of finding the collections of homogeneous k-clique percolated components, where homogeneity means sharing a common set of attributes having value true. A sound and complete algorithm based on subgraph enumeration is proposed. We report experiments on two real databases (a social network of scientific collaborations and a network of gene interactions), showing that the extracted patterns capture meaningful structures.

Keywords

graph mining network analysis attributed graph k-clique percolated component 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Derényi, I., Palla, G., Vicsek, T.: Clique percolation in random networks. Phys. Rev. Lett. 94, 160–202 (2005)CrossRefGoogle Scholar
  2. 2.
    Fukuzaki, M., Seki, M., Kashima, H., Sese, J.: Finding Itemset-Sharing Patterns in a Large Itemset-Associated Graph. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010, Part II. LNCS, vol. 6119, pp. 147–159. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Gao, W., Wong, K.-F., Xia, Y., Xu, R.: Clique Percolation Method for Finding Naturally Cohesive and Overlapping Document Clusters. In: Matsumoto, Y., Sproat, R.W., Wong, K.-F., Zhang, M. (eds.) ICCPOL 2006. LNCS (LNAI), vol. 4285, pp. 97–108. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Ge, R., Ester, M., Gao, B.J., Hu, Z., Bhattacharya, B., Ben-Moshe, B.: Joint cluster analysis of attribute data and relationship data: The connected k-center problem. ACM Trans. Knowl. Discov. Data (TKDD) 2(2), 1–35 (2008)CrossRefGoogle Scholar
  5. 5.
    Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Julien, P., Roth, A., Simonovic, M., Bork, P., von Mering, C.: STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Research 37, 412–416 (2009)CrossRefGoogle Scholar
  6. 6.
    Leyritz, J., Schicklin, S., Blachon, S., Keime, C., Robardet, C., Boulicaut, J.F., Besson, J., Pensa, R.G., Gandrillon, O.: Squat: A web tool to mine human, murine and avian sage data. BMC Bioinformatics 9(1), 378 (2008)CrossRefGoogle Scholar
  7. 7.
    Moser, F., Colak, R., Rafiey, A., Ester, M.: Mining cohesive patterns from graphs with feature vectors. In: SIAM Data Mining Conf (SDM), pp. 593–604 (2009)Google Scholar
  8. 8.
    Moser, F., Ge, R., Ester, M.: Joint cluster analysis of attribute and relationship data without a-priori specification of the number of clusters. In: Int. Conf. on Knowledge Discovery and Data Mining (KDD), p. 510 (2007)Google Scholar
  9. 9.
    Mougel, P.N., Plantevit, M., Rigotti, C., Gandrillon, O., Boulicaut, J.F.: Constraint-Based Mining of Sets of Cliques Sharing Vertex Properties. In: Workshop on Analysis of Complex NEtworks (ACNE 2010) co-located with ECML/PKDD 2010 (2010)Google Scholar
  10. 10.
    Musiał, K., Juszczyszyn, K.: Properties of Bridge Nodes in Social Networks. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 357–364. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)CrossRefGoogle Scholar
  12. 12.
    Silva, A., Meira Jr., W., Zaki, M.J.: Structural correlation pattern mining for large graphs. In: Workshop on Mining and Learning with Graphs (MLG), pp. 119–126 (2010)Google Scholar
  13. 13.
    Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for generating all maximal cliques and computational experiments. Theor. Comput. Sci. (TCS) 363, 28–42 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Tong, H., Gallagher, B., Faloutsos, C., Eliassi-rad, T.: Fast best-effort pattern matching in large attributed graphs. In: Int. Conf. on Knowledge Discovery and Data Mining, KDD (2007)Google Scholar
  15. 15.
    Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute similarities. Proc. VLDB Endow. 2, 718–729 (2009)Google Scholar
  16. 16.
    Zhou, Y., Cheng, H., Yu, J.X.: Clustering large attributed graphs: An efficient incremental approach. In: Int. Conf. on Data Mining (ICDM), pp. 689–698 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pierre-Nicolas Mougel
    • 1
    • 2
  • Christophe Rigotti
    • 1
    • 2
  • Olivier Gandrillon
    • 1
    • 3
  1. 1.Université de Lyon, CNRS, INRIAFrance
  2. 2.INSA-Lyon, LIRIS, UMR5205France
  3. 3.Université Lyon 1, CGPhiMC, UMR5534France

Personalised recommendations