Advertisement

Discovering Coverage Patterns for Banner Advertisement Placement

  • P. Gowtham Srinivas
  • P. Krishna Reddy
  • S. Bhargav
  • R. Uday Kiran
  • D. Satheesh Kumar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7302)

Abstract

We propose a model of coverage patterns and a methodology to extract coverage patterns from transactional databases. We have discussed how the coverage patterns are useful by considering the problem of banner advertisements placement in e-commerce web sites. Normally, advertiser expects that the banner advertisement should be displayed to a certain percentage of web site visitors. On the other hand, to generate more revenue for a given web site, the publisher has to meet the coverage demands of several advertisers by providing appropriate sets of web pages. Given web pages of a web site, a coverage pattern is a set of pages visited by a certain percentage of visitors. The coverage patterns discovered from click-stream data could help the publisher in meeting the demands of several advertisers. The efficiency and advantages of the proposed approach is shown by conducting experiments on real world click-stream data sets.

Keywords

Click stream mining online advertising internet monetization computational advertising graphical ads delivery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB 1994: Proceedings of the 20th International Conference on Very Large Data Bases, pp. 487–499. Morgan Kaufmann Publishers Inc. (1994)Google Scholar
  2. 2.
    Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research, 233–235 (1979)Google Scholar
  3. 3.
    Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified np-complete problems. In: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, STOC 1974, pp. 47–63. ACM (1974)Google Scholar
  4. 4.
    Venetis, P., Koutrika, G., Garcia-Molina, H.: On the selection of tags for tag clouds. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, WSDM 2011, pp. 835–844. ACM (2011)Google Scholar
  5. 5.
    Bonchi, F., Castillo, C., Donato, D., Gionis, A.: Topical query decomposition. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2008, pp. 52–60. ACM (2008)Google Scholar
  6. 6.
    Amiri, A., Menon, S.: Efficient scheduling of internet banner advertisements. ACM Trans. Internet Technol. 3(4), 334–346 (2003)CrossRefGoogle Scholar
  7. 7.
    Ghosh, A., Rubinstein, B.I., Vassilvitskii, S., Zinkevich, M.: Adaptive bidding for display advertising. In: WWW 2009: Proceedings of the 18th International Conference on World Wide Web, pp. 251–260. ACM (2009)Google Scholar
  8. 8.
    Wu, X., Bolivar, A.: Keyword extraction for contextual advertisement. In: WWW 2008: Proceeding of the 17th International Conference on World Wide Web, pp. 1195–1196. ACM (2008)Google Scholar
  9. 9.
    Chakrabarti, D., Agarwal, D., Josifovski, V.: Contextual advertising by combining relevance with click feedback. In: WWW 2008: Proceeding of the 17th International Conference on World Wide Web, pp. 417–426. ACM (2008)Google Scholar
  10. 10.
    Alaei, S., Arcaute, E., Khuller, S., Ma, W., Malekian, A., Tomlin, J.: Online allocation of display advertisements subject to advanced sales contracts. In: ADKDD 2009: Proceedings of the Third International Workshop on Data Mining and Audience Intelligence for Advertising, pp. 69–77. ACM (2009)Google Scholar
  11. 11.
    Sripada, B., Reddy, P.K., Kiran, R.U.: Coverage patterns for efficient banner advertisement placement. In: WWW (Companion Volume), pp. 131–132 (2011)Google Scholar
  12. 12.
    Liu, B., Hsu, W., Ma, Y.: Mining association rules with multiple minimum supports. In: KDD 1999: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 337–341. ACM (1999)Google Scholar
  13. 13.
    Han, J., Kamber, M.: Data mining: concepts and techniques. Morgan Kaufmann (2006)Google Scholar
  14. 14.
    Fimi: Frequent itemset mining implementations repository (July 2010), http://fimi.cs.helsinki.fi/
  15. 15.
    Frank, A., Asuncion, A.: UCI machine learning repository (2010), http://archive.ics.uci.edu/ml
  16. 16.
    Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, SIGMOD 1993, pp. 207–216. ACM (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • P. Gowtham Srinivas
    • 1
  • P. Krishna Reddy
    • 1
  • S. Bhargav
    • 1
  • R. Uday Kiran
    • 1
  • D. Satheesh Kumar
    • 1
  1. 1.International Institute of Information TechnologyHyderabadIndia

Personalised recommendations