Advertisement

Brain-Computer Interfaces: Proposal of a Paradigm to Increase Output Commands

  • Ricardo Ron-Angevin
  • Francisco Velasco-Álvarez
  • Salvador Sancha-Ros
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 78)

Abstract

A BCI (Brain-Computer Interface) is based on the analysis of the brain activity recorded during certain mental activities, to control an external device. Some of these systems are based on discrimination of different mental tasks, matching the number of mental tasks to the number of control commands and providing the users with one to three commands. The main objective of this paper is to introduce the navigation paradigm proposed by the University of Málaga (UMA-BCI) which, using only two mental states, offers the user several navigation commands to be used to control a virtual wheelchair in a virtual environment (VE). In the same way, this paradigm should be used to provide different control commands to interact with videogames. In order to control the new paradigm, subjects are submitted in a progressive training based in different VEs and games. Encouraging results supported by several experiments show the usability of the paradigm.

Keywords

Brain-Computer Interfaces (BCI) Motor Imagery Navigation commands Virtual Environment (VE) Motivation Games 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., et al.: Brain-Computer Interfaces for Communication and Control. Clinical Neurophysiology 113, 767–791 (2002)CrossRefGoogle Scholar
  2. 2.
    Mak, J.N., Wolpaw, J.R.: Clinical Applications of Brain-Computer Interfaces: Current State and Future Prospects. IEEE Reviews in Biomedical Engineering 2, 187–199 (2009)CrossRefGoogle Scholar
  3. 3.
    Birbaumer, N., Kübler, A., Ghanayim, N., et al.: The Thought Translation Device (TTD) for Completely Paralyzed Patients. IEEE Transactions on Rehabilitation Engineering 8, 190–193 (2000)CrossRefGoogle Scholar
  4. 4.
    Farwell, L.A., Donchin, E.: Talking Off the Top of Your Head: Toward a Mental Prosthesis Utilizing Event-Related Brain Potentials. Electroencephalogr. Clin. Neurophysiol. 70, 510–523 (1988)CrossRefGoogle Scholar
  5. 5.
    Wolpaw, J.R., McFarland, D.J., Vaughan, T.M.: Brain-Computer Interface Research at the Wadsworth Center. IEEE Trans. Rehabil. Eng. 8, 222–226 (2000)CrossRefGoogle Scholar
  6. 6.
    Kübler, A., Müller, K.R.: An introduction to brain-computer interfacing. In: Dornhege, G., Millán, J.d.R., Hinterberger, T., et al. (eds.) Toward Brain-Computer Interfacing, pp. 1–25. MIT Press, Cambrigde (2007)Google Scholar
  7. 7.
    Neuper, C., Pfurtscheller, G.: Motor imagery and ERD. In: Pfurtscheller, G., Lopes da Silva, F.H. (eds.) Event-Related Desynchronization. Handbook of Electroencephalography and Clinical Neurophysiology. Revised Series, vol. 6, pp. 303–325. Elseiver, Amsterdam (1999)Google Scholar
  8. 8.
    Games and Brain-Computer Interfaces: The state of the Art, Boris ReuderinkGoogle Scholar
  9. 9.
    Lécuyer, A., Lotte, F., Reilly, R.B., et al.: Brain-Computer Interfaces, Virtual Reality, and Videogames. Computer 41, 66–72 (2008)CrossRefGoogle Scholar
  10. 10.
    Leeb, R., Scherer, R., Keinrath, C., et al.: Combining BCI and Virtual Reality: Scouting Virtual Worlds. In: Dornhege, G., Millán, J.d.R., Hinterberger, T., et al. (eds.) Toward Brain-Computer Interfacing, pp. 393–408. MIT Press, Cambrigde (2007)Google Scholar
  11. 11.
    Ron-Angevin, R., Díaz-Estrella, A.: Brain-Computer Interface: Changes in Performance using Virtual Reality Techniques. Neurosci. Lett. 449, 123–127 (2009)CrossRefGoogle Scholar
  12. 12.
    Leeb, R., Lee, F., Keinrath, C., et al.: Brain-Computer Communication: Motivation, Aim, and Impact of Exploring a Virtual Apartment. IEEE Transactions on Neural Systems and Rehabilitation Engineering 15, 473–482 (2007)CrossRefGoogle Scholar
  13. 13.
    Leeb, R., Friedman, D., Müller-Putz, G.R., et al.: Self-Paced (Asynchronous) BCI Control of a Wheelchair in Virtual Environments: A Case Study with a Tetraplegic. Computational Intelligence and Neuroscience (2007)Google Scholar
  14. 14.
    Leeb, R., Settgast, V., Fellner, D., et al.: Self-Paced Exploration of the Austrian National Library through Thought. International Journal of Bioelectromagnetism 9, 237–244 (2007)Google Scholar
  15. 15.
    Tsui, C.S.L., Gan, J.Q.: Asynchronous BCI Control of a Robot Simulator with Supervised Online Training. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 125–134. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Scherer, R., Lee, F., Schlögl, A., et al.: Toward Self-Paced Brain-Computer Communication: Navigation through Virtual Worlds. IEEE Transactions on Biomedical Engineering 55, 675–682 (2008)CrossRefGoogle Scholar
  17. 17.
    Obermaier, B., Neuper, C., Guger, C., et al.: Information Transfer Rate in a Five-Classes Brain-Computer Interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering 9, 283–288 (2001)CrossRefGoogle Scholar
  18. 18.
    Kronegg, J., Chanel, G., Voloshynovskiy, S., et al.: EEG-Based Synchronized Brain-Computer Interfaces: A Model for Optimizing the Number of Mental Tasks. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society 15, 50–58 (2007)CrossRefGoogle Scholar
  19. 19.
    Guger, C., Edlinger, G., Harkam, W., et al.: How Many People are Able to Operate an EEG-Based Brain-Computer Interface (BCI)? IEEE Transactions on Neural Systems and Rehabilitation Engineering 11, 145–147 (2003)CrossRefGoogle Scholar
  20. 20.
    Pfurtscheller, G.: Quantification of ERD and ERS in the time domain. In: Pfurtscheller, G., Lopes da Silva, F.H. (eds.) Event-Related Desynchronization. Handbook of Electroencephalography and Clinical NeuroPhysiology. Revised Series, vol. 6, pp. 89–105. Elseiver, Amsterdam (1999)Google Scholar
  21. 21.
    Schlögl, A., Kronegg, J., Huggins, J.E., et al.: Evaluation Criteria for BCI Research. In: Dornhege, G., Millán, J.d.R., Hinterberger, T., et al. (eds.) Toward Brain-Computer Interfacing, pp. 327–342. The MIT Press, Cambrigde (2007)Google Scholar
  22. 22.
    Blankertz, B., Domhege, G., Krauledat, M., et al.: The Berlin Brain-computer interface presents the novel mental typewriter Hex-o-Spell. In: 3rd International Brain-Computer Interface Workshop and Training course, Graz, Austria, pp. 108–109 (2006)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012

Authors and Affiliations

  • Ricardo Ron-Angevin
    • 1
  • Francisco Velasco-Álvarez
    • 1
  • Salvador Sancha-Ros
    • 1
  1. 1.Dpto. Tecnología Electrónica, ETSI TelecomunicaciónUniversidad de MálagaMálagaSpain

Personalised recommendations