Application of Software Tools in Power Engineering Calculations

Chapter

Abstract

MATLAB® technical computing software is a software tool for solving mathematical problems, analyzing data and visualization. This tool integrates numerical analysis, matrix calculation, data processing and graphical display. It is characterized by its ability to solve all mathematical problems. The advantage of this software tool is in its simple expression of mathematical problems and solutions as they are written in mathematics, by which traditional programming is avoided [1-4].

Keywords

Circuit Breaker Lightning Discharge Hydroelectric Power Plant Fault Current Overhead Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    MATLAB® The Language of Technical Computing, Version 7.10.0 (R2010a), The MathWorks Inc, 2010.Google Scholar
  2. 2.
    J.H. Mathews, K.D. Fink: Numerical Methods using MATLAB, Fourth Edition, Pearson Education International, 2004.Google Scholar
  3. 3.
    S. T. Karris: Numerical Analysis Using MATLAB and Spreadsheets, Second Edition, Orchard Publication, ISBN 0-9744239-1-2.Google Scholar
  4. 4.
    A. Gilat: Introduction to MATLAB 7 with examples, Translation of second edition, Mikro Knjiga, 2005.Google Scholar
  5. 5.
    Z. Stojkovi′c: Computer-Aided Design in Power Engineering – Software Tools, Monography, II edition, Faculty of Electrical Engineering, Belgrade, Academic Mind, Belgrade, March 2003.Google Scholar
  6. 6.
    Z. Stojkovi′c, J. Mikulovi′c, Z. Stojanovi′c: Workshop for Software Tools in Power Engineering, Faculty of Electrical Engineering, Belgrade, Academic Mind, Belgrade, June 2006.Google Scholar
  7. 7.
    A. M. Gole, A. Daneshpooy: Towards Open Systems : A PSCAD/EMTDC to MATLAB Interface, IPST’97 – International Conference on Power Systems Transients, Sietle, June 1997, pp.145 – 149.Google Scholar
  8. 8.
    Simulink_, User’s Guide, Version 7.5 (R2010a), The MathWorks Inc, 2010.Google Scholar
  9. 9.
    H. Bode: Matlab-Simulink, Analyse und Simulation dynamischer Systeme, 2. Auflage, Teubner Verlag, Wiesbaden, 2006.Google Scholar
  10. 10.
    J. Nahman, V. Mijailovi′c: High-Voltage Substations, Monography, Beopres, Belgrade, 2000.Google Scholar
  11. 11.
    R. Natarajan: Computer-Aided Power System Analysis, Marcel Dekker Inc, New York, NY, USA, 2002.Google Scholar
  12. 12.
    ATP – EMTP Rule Book, Canadian-American EMTP Users Group, 1997.Google Scholar
  13. 13.
    Power Tools for Windows, SKM Systems Analysis, Inc, Manhattan Beach, California.Google Scholar
  14. 14.
    Power System Simulator – Program Application Guide, PSS documentation, PT1.Google Scholar
  15. 15.
    J. Nahman, D. Salamon, V. Mijailovi′c: High-Voltage Substations –Collections of Solved Tasks with Supplements, Faculty of Electrical Engineering, Academic Mind, Belgrade, 2002. 306 2. Application of software tools in power engineering calculationsGoogle Scholar
  16. 17.
    Z. Stojkovi′c, P. Vu¡ceti′c, M. Bubnjevi′c, A. Mijal¡ci′c, B. Bjelanovi′c: Application of Databases in the Design of High-Voltage Substations, Elektroprivreda, No. 1, 2005, pp. 3-19.Google Scholar
  17. 18.
    M. Marinkovi′c, Z. Stojkovi′c: Software Tool SPLCAD for Designing Medium-Voltage Overhead Lines, Faculty of Electrical Engineering, Belgrade, 2009.Google Scholar
  18. 19.
    Development of a Magnetic Field Spatial Scanner for Diagnostic Equipment in Power Systems and Environmental Protection, Technological Development Project TR-17031, Ministry of Science and Technological Development of the Republic of Serbia, 2008-2011, (Manager Z. Stojkovi′c).Google Scholar
  19. 20.
    G. Dotli′c: Excerpts from Technical Standards, SMEITS, Belgrade, 2007, pp. 51–65.Google Scholar
  20. 21.
    M. D- uri′c: Elements of Power Systems, Beopres, Belgrade, 2005.Google Scholar
  21. 22.
    G. Dotli′c: Power Systems Rulebooks, SMEITS, Belgrade, 2007, pp. 75–138.Google Scholar
  22. 23.
    Modeling and Simulation of the Power Plants and Power Systems in the Balkan Region under a new Technological and Market Environment, Faculty of Electrical Engineering, Rostock, FR Germany, Faculty of Electrical Engineering, Belgrade, Serbia, 2006-2007, (Manager Z. Stojkovi′c).Google Scholar
  23. 25.
    M. Lovri′c, Z. Stojkovi′c: Modeling the Turbine Regulator of the”Kokin Brod” Hydroelectric Power Plant Using Matlab_/Simulink_, Faculty of Electrical Engineering, Belgrade, 2007.Google Scholar
  24. 26.
    D. Stojanovi′c, Z. Stojkovi′c: Modeling the Hydraulic and Mechanical Parts of the”Kokin Brod” Hydroelectric Power Plant Using Matlab_/Simulink_, Faculty of Electrical Engineering, Belgrade, 2007.Google Scholar
  25. 27.
    [25] M. D- uri′c: Regulation of Power Systems, Faculty of Electrical Engineering, Belgrade, BEOPRES, Belgrade, 2004. M.S. ′Calovi′c: Regulation of Power Systems, Volume 1: Regulation of Frequency and Active Powers and Volume 2: Regulation of Voltage and Reactive Powers, Faculty of Electrical Engineering, University of Belgrade, Belgrade, 1997.Google Scholar
  26. 28.
    Electronic Governor MIPREG DGC 600c – Service Manual.Google Scholar
  27. 29.
    L. Dube: MODELS in ATP, Language Manual, Feb 1996.Google Scholar
  28. 30.
    L. Prikler, H. Kr. Hoidalen: ATPDrawTM for Windows 5.6, Users’ Manual, Nov 2009, p. 270.Google Scholar
  29. 31.
    C.M. Wiggins, S.E.Wright: Switching Transient Fields in Substations, IEEE Transactions on Power Delivery, Vol.6, No.2, April 1991, pp. 591-599. 2.4. AutoCAD 307Google Scholar
  30. 32.
    D.E. Thomas, C.M. Wiggins, T.M. Salas, F.S. Nickel, S.E. Wright: Induced Transients in Substation Cables: Measurements and Models, IEEE Transactions on Power Delivery, Vol.9, No.4, Oct 1994, pp. 1861-1867.Google Scholar
  31. 33.
    C.M. Wiggins, D.E. Thomas, F.S.Nickel, S.E. Wright: Transient Electromagnetic Interference in Substations, IEEE Transactions on Power Delivery, Vol.9, No.4, Oct 1994, pp. 1869-1881.Google Scholar
  32. 34.
    H. Bauer, M. Claus, J. Gorablenkov, G. Hentschel, B. Suermann: Zur Storbelastung und EMV der Leit- und Schutztechnik von SF6 – isolierten Schaltanlagen, Elektrizitatswirschaft, Jg.94, 1995, Heft 9, S. 498-503.Google Scholar
  33. 35.
    W. Kohler, T. Dischinger, U. Scharli: Measurement of Fast Transient in HV Substations and their Effects on Secondary Equipment, Proceedings EMC Symposium Zurich, 1993, pp. 365-370.Google Scholar
  34. 36.
    Elaboration No. 89/IU-003: Calculation of Switsching Overvoltages and Growth of Potential of the Metal Enclosure of the 400 kV SF6 Gas Insulated Switchgear (Vi¡segrad), Institute for Power Systems”Energoinvest” Sarajevo, Sarajevo, 1989.Google Scholar
  35. 37.
    Study No. 319903: Analysis of Effectiveness of Overvoltage Protection in”Vi¡segrad” HPP, Institute of Electrical Engineering”Nikola Tesla” Belgrade, Belgrade, 1999.Google Scholar
  36. 38.
    M. D’Amore, M. S. Sarto : Modelling of Lossy Ground Parameters in the EMTP for Very-Fast Transient Analysis, IPST’97 – International Conference on Power Systems Transients, Sietle, June 1997, pp. 49-54.Google Scholar
  37. 39.
    A. Eriksson, K.G. Petterson, A. Krenicky, R. Baker, J.R. Ochoa, A. Leibold: Experience with Gas Insulated Substations in the USA, IEEE Transactions on Power Delivery, Vol.10, No.1, Jan 1995, pp. 210-216.Google Scholar
  38. 40.
    V.V. Kumar, J. Thomas, M.S. Naidu: Influence of Switching Conditions on the VFTO Magnitudes in a GIS, IEEE Transactions on Power Delivery, Vol.16, No.4, Oct 2001, pp. 539 – 544.Google Scholar
  39. 41.
    A. Ametani, N. Nagaoka, N. Mori, K. Shimizu: Switching Overvoltages on a Pipe in a Gas - insulated Substation, IPST’97 – International Conference on Power Systems Transients, Seattle, June 1997, pp. 286-291.Google Scholar
  40. 42.
    T. Irwin, J. Lopez-Roldan: Substation Earthing: Special Considerations for GIS Substations; Substation Earthing, IEE Seminar on, 2000, Ref. No. 2000/033, pp. 5/1-5/5.Google Scholar
  41. 43.
    A.M. Miri, Z. Stojkovi′c: Transient Electromagnetic Phenomena in the Secondary Circuits of Voltage- and Current Transformers in GIS (Measurements and Calculations), IEEE Transactions on Power Delivery, 308 2. Application of software tools in power engineering calculations Vol.16, No.4, Oct 2001, pp. 571 – 575.Google Scholar
  42. 44.
    A. M. Miri, Z. Stojkovi′c: Transient Electromagnetic Phenomena in the Secondary Circuits of Measuring Transformers in GIS, Elektroprivreda, No. 4, 1999, pp. 61-66.Google Scholar
  43. 45.
    Z. Stojkovi′c, A. Miri, G. Mitri′c: Estimation of Metal Clad Gas SF6 Insulated Substation Potential Pickup Caused by Switching Disconnector Operations, Elektroprivreda, No.2, 2003, pp. 54-59.Google Scholar
  44. 46.
    Z. Stojkovi′c, A. M. Miri, G. Mitri′c: Estimation of Metal Clad Gas SF6 Insulated Substation Potential Pickup Caused by Switching Disconnector Operations, 26th JUKO CIGRE Conference, R33-06, Tesli′c, May 2003.Google Scholar
  45. 47.
    CIGRE Working Group 33.02: Guidelines for Representation of Network Elements when Calculating Transients (Internal Overvoltages), Paris, 1991.Google Scholar
  46. 48.
    D. Povh, H. Schmitt, O. Volcker, R. Witzmann: Modeling and Analysis Guidelines for Very Fast Transients, IEEE Transactions on Power Delivery, Vol.11, No. 4, Oct 1996, pp. 2028-2035.Google Scholar
  47. 49.
    Katalog Siemens Badenwerk, Umspannanlage Oberwald.Google Scholar
  48. 50.
    L. Mahserdijian, M. Landry, B. Khodabakhchian: The new EMTP Breaker Arc Model, IPST’97 – International Conference on Power Systems Transients, Sietle, June 1997, pp. 245-249.Google Scholar
  49. 51.
    420 kV SF6 Switchgear Catalog, Energoinvest, Sarajevo.Google Scholar
  50. 52.
    Z. Stojkovi′c: Tempus Project”Power System Platforms for Steady State and Transients Calculations”, thema”Alternative Transients Program (ATP) Features”, Faculty of Electrical Engineering, Belgrade, May 11th to May 14th, 2009.Google Scholar
  51. 53.
    P. Blattner, L. Urlich, K. Cook, T. Dysk: Microsoft Excel 2000 Guide (Special Edition), CET, Belgrade, 2000.Google Scholar
  52. 54.
    J. Walkenbach: Microsoft Office Excel 2007, Mikro Knjiga, Belgrade.Google Scholar
  53. 55.
    P. Litwin, K. Getz, M. Gilbert: Access 2000 Handbook for Programmers, Mikro Knjiga, Belgrade, 2001.Google Scholar
  54. 56.
    S. Roman: Access Database Design & Programming, 3rd Edition, O’Reilly, Cambridge, 2002Google Scholar
  55. 57.
    S. Roman: Writing Excel Macros with VBA, Second Edition, O’Reilly, Cambridge, 2002Google Scholar
  56. 58.
    P.G. Mc Keown, C.A. Piercy: Learning to Program with Visual Basic, Second Edition, John Wiley & Sons Inc., New York, 2002Google Scholar
  57. 59.
    Estimation of the Value of Telecommunications Equipment for Telekom Srbija a.d., Faculty of Electrical Engineering, Belgrade, customer Telekom”Srbija” a.d., 2005. (Z. Stojkovi′c - participant in Study). 2.4. AutoCAD 309Google Scholar
  58. 60.
    Z. Stojkovi′c, D. Medan, M. Nikoli′c, ¡Z. Stanki′c, S. Oparnica: Some Aspects of AutoCAD Program Application in Computer-Aided Design, Elektroprivreda No. 4, 2003, pp. 18-26.Google Scholar
  59. 61.
    C. Fleischhaner: Excel in Naturwissenschaft und Technik, Grundlagen und Anwendung, 2. uberarbeitete und erweiterte Auflage, Addison-Wesley, Munich, 2000.Google Scholar
  60. 62.
    K. Red¡zi′c, Z. Stojkovi′c: Designing Power Substations Using Macros in Excel, Faculty of Electrical Engineering, Belgrade, 2008.Google Scholar
  61. 63.
    Instructions for Designing Power Systems and Installations for Supplying Power to Base Stations of Mobile and Wireless Systems, customer Republic Agency for Telecommunications - RATEL, Belgrade, 2007. (Group Manager Z. Stojkovi′c).Google Scholar
  62. 64.
    I. Jovanov, Z. Stojkovi′c: Application of Excel in Designing Power Supply of Telecommunications Equipment, Faculty of Electrical Engineering, Belgrade, 2007.Google Scholar
  63. 65.
    Main Project for Direct Voltage Power Supply of Devices for Expansion 2 of the Control-Commutation Center”Belgrade” GSM Network of Mobile Telecommunications of Serbia Company”Telekom Srbija” a.d., Faculty of Electrical Engineering, Belgrade, June 2007, (Chief of Project Z. Stojkovi′c).Google Scholar
  64. 66.
    Main Project for Power Supply of the Control-Commutation Center”Belgrade” GSM/UMTS Network”VIP MOBILE” (a part of the Mobilkom Austria Group) – phase 1, Faculty of Electrical Engineering, Belgrade, June 2007, (Chief of Project Z. Stojkovi′c).Google Scholar
  65. 67.
    Main Project for Construction of the”Podgorica” Control-Commutation Center for the GSM/UMTS Network for the Telecommunications Company”MTEL” D.O.O. (Power Supply of Devices), Faculty of Electrical Engineering, Belgrade, June 2007, (Chief of Project Z. Stojkovi′c).Google Scholar
  66. 68.
    Z. Stojkovi′c, A. Jovanovi′c: Software Tool for Automation in the Design of Power Supply for Telecommunications Equipment, Faculty of Electrical Engineering, Belgrade, 2009.Google Scholar
  67. 69.
    User’s Guide AutoCAD 2011, Autodesk, 2010.Google Scholar
  68. 70.
    E. Finkelstein: AutoCAD 2002 Bible, Mikro knjiga, Belgrade, 2002.Google Scholar
  69. 71.
    H. J. Engelke: 3D – Konstruktion mit AutoCAD 2002, Volumen-Modellieren fur Einsteiger, Hanser Verlag Munchen Wien, 2002.Google Scholar
  70. 72.
    ANSYS 12.1 – Technical Overwiew, ANSYS Inc, USA, 2010.Google Scholar
  71. 73.
    D. Medan, Z. Stojkovi′c: Three-Dimensional Modeling of Power System Structures Using AutoCAD, Faculty of Electrical Engineering, University of Belgrade, 2004. 310 2. Application of software tools in power engineering calculationsGoogle Scholar
  72. 74.
    Z. Stojkovi′c: Check of High-Voltage Equipment According to Power of Short Circuit in 2000 Bajina Ba¡sta HPP, Work for Expert Exam in the Field of Electrical Engineering, Belgrade, 1991.Google Scholar
  73. 75.
    P. Hasse: Overvoltage Protection of Low Voltage Systems, IEE Power Series 12, Peter Peregrinus Ltd., London, 1992.Google Scholar
  74. 76.
    IEC 1024-1-1 Protection of Structures Against Lightning; Part 1: General Principles, Section 1: Guide A – Selection of Protection Levels for Lightning Protection Systems, 1993.Google Scholar
  75. 77.
    BS 6651 Code of Practice for Protection of Structures Against Lightning, 1999.Google Scholar
  76. 78.
    IEEE Standard 998: Guide for Direct Stroke Shielding of Substations, 1996.Google Scholar
  77. 79.
    French National Standard NF C 17-102: Protection of Structures and Open Areas Against Lightning Using Early Streamer Emission Air Terminals, July 1995.Google Scholar
  78. 80.
    A.R. Hileman: Insulation Coordination for Power Systems, Marcel Decker, Inc, New York-Basel, 1999.Google Scholar
  79. 81.
    A. Haddad, D.F. Warne: Advances in High Voltage Engineering, IEE Publishing London, 2004.Google Scholar
  80. 82.
    Lightning Protection Installations. Lightning Conductors with Circular Ring, SRPS N.B4.811, 1996.Google Scholar
  81. 83.
    A. M. Mousa: Scientists Oppose Early Streamer Air Terminals, 1999, National Lightning Safety Institute, 1999, http://www.lightningsafety.com/nlsi lhm/charge transfer opp.html
  82. 84.
    Z. Stojkovi′c, D. Medan: Software Tool for Lightning Protection Design of General and Special Buildings, International Scientific-Trade Symposium INFOTEH-JAHORINA 2005, Vol. 4, Ref. D-11, March 2005, pp. 186-190.Google Scholar
  83. 85.
    Z. Stojkovi′c, ¡Z. Stanki′c: AutoCAD-Based Concept for Estimating Lightning Protection Zone of Transmission Lines and Structures, International Journal of Electrical Engineering Education (IJEEE), Vol. 43, No. 4, pp.299-317, Oct 2006.Google Scholar
  84. 86.
    Z. Stojkovi′c: Evaluation of Lightning Protection Zone using AutoCAD-Based Software Tool, Institute of Power Transmission and High Voltage Technology, University of Stuttgart, FR Germany, Annual Report 2006, pp. 64-67.Google Scholar
  85. 87.
    Z. Stojkovi′c, ¡Z. Stanki′c: Lightning Protection Design of General and Special Buildings, Elektroprivreda, No.3, 2005, pp. 84-91.Google Scholar
  86. 88.
    Z. Stojkovi′c, ¡Z. Stanki′c: Lightning Protection Design of General and 2.4. AutoCAD 311Google Scholar
  87. 89.
    Special Buildings, 27th JUKO-CIGRE Conference, RC4-01, Zlatibor, May 29th – June 3rd, 2005.Google Scholar
  88. 90.
    G. Omura: AutoCAD 2002, SYBEX, Inc, San Francisco, 2003.Google Scholar
  89. 91.
    G. Omura: The ABC’s of AutoLISP, SYBEX, Inc, San Francisco, 2001.Google Scholar
  90. 92.
    Z. Stojkovi′c, A.Gruji′c, S. Tenbohlen: Lightning Protection Design of Substations and Transmission Lines, 28th JUKO-CIGRE Conference, RC4-01, Vrnja¡cka Banja, September 30th – October 5th, 2007.Google Scholar
  91. 93.
    M. Savi′c, Z. Stojkovi′c: High-Voltage Technique – Lightning Overvoltages, Monography, II corrected and amended edition, Faculty of Electrical Engineering, Belgrade, 2001.Google Scholar
  92. 94.
    IEEE Working Group on Lightning Performance of Transmission Lines: A Simplified Method for Estimating the Lightning Performance of Transmission Lines, IEEE Trans. on PA&S, Apr. 1985, pp.919-932.Google Scholar
  93. 95.
    A.J. Eriksson: An Improved Electrogeometric Model for Transmission Line Shielding Analysis, IEEE Transactions on Power Delivery, July 1987, pp. 871-886.Google Scholar
  94. 96.
    G. Baldo: Lightning Protection and the Physics of Discharge, High Voltage Engineering Symposium, London, No. 467, Vol. 2, pp. 2.169.S0-2.176.S0, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Electrical EngineeringUniversity of BelgradeBelgradeSerbia

Personalised recommendations