Advertisement

Computer-Aided Modeling and Simulation

  • Zlatan Stojkovic
Chapter

Abstract

The purpose of this chapter is to familiarize the reader with the following:
  • The definition of the concept of computer-aided modeling and simulation;

  • A review of the method for model development;

  • The principles of carrying out computer-aided simulation and its limitations;

  • A review of an example for initialization of computer-aided modeling and simulation.

Keywords

Heaviside Function Lightning Discharge Voltage Response Impulse Current Soil Resistivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.M. Ingels: What Every Engineer Should Know About Computer Modeling and Simulation, Marcel Dekker, Inc., New York and Basel, 1985.Google Scholar
  2. 2.
    J.K. Krouse: What Every Engineer Should Know About Computer- Aided Design and Computer-Aided Manufacturing, Marcel Dekker, Inc., New York and Basel, 1982.Google Scholar
  3. 3.
    C. Reisbeck: CAD/CAM, Einfuhrung, Praxis, Auswahl, Hoppenstedt Technik Tabellen Verlag, Darmstadt, 1990.Google Scholar
  4. 4.
    J. Stark: What Every Engineer Should Know About Practical CAD/CAM Applications, Marcel Dekker, Inc., New York and Basel, 1986.Google Scholar
  5. 5.
    H. Yoshikawa, F. Arbaba, T. Tomiyama: Intelligent CAD, III, Selected and Reviewed Papers and Reports From the IFIP TC5/WG5.2 Third International Workshop on Computer-Aided Design, Osaka, Japan, 26-29 September, 1989, North-Holland, 1991.Google Scholar
  6. 6.
    U. Butz, D. Heinze, I. Neumann: Softwareentwicklung f¨ur die Projektirung von Elektroenergieanlagen, Verlag Technik GmbH Berlin, 1990.Google Scholar
  7. 7.
    D. To¡si′c: Introduction to Numerical Analysis, Belgrade, 1997.Google Scholar
  8. 8.
    D. Radunovi′c: Numerical Methods, Academic Mind, Belgrade, 2004.Google Scholar
  9. 9.
    V.A. Levi, D.D. Bekut: Application of Computerized Methods in Power Systems, Stylos, Novi Sad, 1997.Google Scholar
  10. 10.
    Z. Petrovi′c, S. Stupar: Computer-Aided Design, Finite Differences Method, University of Belgrade, 1996.Google Scholar
  11. 11.
    S. Moaveni: Finite Element Analysis, Theory and Application with ANSYS, Second edition, Pearson Education, Inc., 2003.Google Scholar
  12. 12.
    I. Menda¡s, P. Milutinovi′c, D. Ignjatijevi′c: 100 Most Useful FORTRAN Subprograms, IP Dragon, Grupacija Mikro Knjiga, 1991.Google Scholar
  13. 13.
    J.H. Mathews, K.D. Fink: Numerical Methods Using MATLAB, Fourth Edition, Pearson Education International, 2004.Google Scholar
  14. 14.
    B. Ivkovi′c, ¡Z. Popovi′c: Project Management in Civil Engineering, Faculty of Civil Engineering, Nauka, Belgrade, 1995.Google Scholar
  15. 15.
    Z. Stojkovi′c: Grounding Grid Impedance Calculation of the High-Voltage Substations in Uniform and Two-Layer Soil, 22nd Conference of JUKO-CIGRE, R 33-01, Vrnja¡cka Banja, May 1995. 1.7. Supplement: GIC – software tool for calculating… 131Google Scholar
  16. 16.
    Z. Stojkovi′c: Modeling the Impulse Impedance of a Grounding Grid in the Analysis of the Protection of Transformer Substations from Lightning Overvoltages, PhD dissertation, Faculty of Electrical Engineering, Belgrade, 1995.Google Scholar
  17. 17.
    Z. Stojkovi′c: Computer-Aided Design in Power Engineering – Software Tools, Monography, II edition, Faculty of Electrical Engineering, Belgrade, Academic Mind, Belgrade, March 2003.Google Scholar
  18. 18.
    Z. Stojkovi′c, M. S. Savi′c: Influence of Transmission Line Tower Grounding Impedance to the Line Flashover Rate, European Transactions on Electrical Power - ETEP Vol. 9, No. 4, July/August 1999, pp. 261-270.Google Scholar
  19. 19.
    Z. Stojkovi′c, M. S. Savi′c, J. M. Nahman, D. Salamon, B. Bukorovi′c.: Experimental Investigation of Grounding Grid Impulse Characteristics, European Transactions on Electrical Power - ETEP Vol. 8, No. 6, Nov/Dec 1998, pp. 417-421.Google Scholar
  20. 20.
    Z. Stojkovi′c, M. S. Savi′c, J. M. Nahman, D. Salamon, B. Bukorovi′c: Sensitivity Analysis of Experimentally Determined Grounding Grid Impulse Characteristics, IEEE Transactions on Power Delivery, Vol. 13, No. 4, Oct 1998, pp. 1136-1142.Google Scholar
  21. 21.
    Z. Stojkovi′c, M. S. Savi′c, Lj. Geri′c: The Local Effect of Grounding Grid Impulse Characteristics, Elektroprivreda, No. 3, Belgrade, 2000, pp. 20-28.Google Scholar
  22. 22.
    Z. Stojkovi′c: The Soil Ionization Influence on the Lightning Performance of Transmission Lines, Electrical Engineering (Archiv fur elektrotechnik) Vol. 82, No. 1, Sep. 1999, pp. 49-58.Google Scholar
  23. 23.
    Z. Stojkovi′c, M. S. Savi′c: A Dynamic Model of Transmission Line Tower Grounding Impulse Characteristics, 25th Conference of JUKOCIGRE, Herceg Novi, R33-02, September 2001.Google Scholar
  24. 24.
    Z. Stojkovi′c, M. S. Savi′c: Transmission Line Tower Grounding Impedance Influence to the Line Flashover Rate, Selected Chapter XIV in Monography”Power System Operation, Control and Measurement”, Publisher Prof. Dr. Nahman, J., Belgrade 1998, pp.145-157.Google Scholar
  25. 25.
    Z. Stojkovi′c, S. Jakovljevi′c, J. Lo¡si′c: Improving the Process of Calculating Grounding Grid Impulse Resistance Proposed in TR-9, 3rd Conference of JUKO CIRED, R2.4., Vrnja¡cka Banja, October 2002.Google Scholar
  26. 26.
    M. Savi′c, Z. Stojkovi′c: High-Voltage Technique - Lightning Overvoltages, Monography, II corrected and amended edition, Faculty of Electrical Engineering, Belgrade, 2001.Google Scholar
  27. 27.
    J. Nahman: Digital Calculation of Earthing Systems in Nonuniform Soil, Archiv fur Elektrotechnik, Vol. 62, 1980, pp. 19-24. 132 1. Computer-aided modeling and simulationGoogle Scholar
  28. 28.
    J. Nahman, D. Salamon: Earthing System Modelling by Element Aggregation, Proc. IEE, Pt.C, No. 1, Vol. 133, 1986, pp. 54-58.Google Scholar
  29. 29.
    J. Nahman: Numerical Method for Determining Self-Resistances of Thin Cylindrical Linear Conductors, Elektrotehnika, Vol. 27, No. 1-2, 1984, pp. 27-32.Google Scholar
  30. 30.
    R. Velasquez, D. Mukhedkar: Analytical Modelling of Grounding Electrodes Transient Behavior, IEEE Transactions on Power Apparatus and Systems, Vol. PAS-103, No. 6, June 1984, pp. 1314-1322.Google Scholar
  31. 31.
    E. Ja. Rjabkova: Grounding Grids in High-Voltage Substations, Energija, Moscow, 1978, (in Russian).Google Scholar
  32. 32.
    B. Reljin: The Theory of Electrical Circuits I - Solving Circuits in the Domain of Time, Nauka, Belgrade, 1990.Google Scholar
  33. 33.
    R. Natarajan: Computer-Aided Power System Analysis, Marcel Dekker, Inc., New York and Basel, 2000.Google Scholar
  34. 34.
    M. A. Mousa: The Soil Ionization Gradient Associated with Discharge of High Currents into Concentrated Electrodes, IEEE Transactions on Power Delivery, Vol. 9, No. 3, July 1994, pp. 1669-1676.Google Scholar
  35. 35.
    E. E. Oettle: A New General Estimation Curve for Predicting the Impulse Impedance of Concentrated Earth Electrodes, IEEE Transactions on Power Delivery, Vol. 3, No. 4, Oct 1988, pp. 2020-2029.Google Scholar
  36. 36.
    C.H. Edwards, D.E. Penney: Differential Equations and Boundary Value Problems, Computing and Modeling, Third edition, Pearson Education, Inc., 2004.Google Scholar
  37. 37.
    ATP - EMTP Rule Book, Canadian-American EMTP Users Group, 1997.Google Scholar
  38. 38.
    Electromagnetic Transients Program (EMTP) - Primer,Westinghouse Electric Corporation, 1985, p. 211.Google Scholar
  39. 39.
    L. Prikler, H. Kr. Hoidalen: ATPDrawTM for Windows 5.6, Users’ Manual, Nov 2009, p. 270.Google Scholar
  40. 40.
    MATLAB_ – The Language of Technical Computing, Version 7.10.0 (R2010a), The Math Works Inc., 2010.Google Scholar
  41. 41.
    Z. Stojkovi′c, J. Mikulovi′c, Z. Stojanovi′c: Workshop for Software Tools in Power Engineering, Faculty of Electrical Engineering, Belgrade, Academic Mind, Belgrade, June 2006.Google Scholar
  42. 42.
    H. Bode: Matlab-Simulink, Analyse und Simulation dynamischer Systeme, 2. Auflage, Teubner Verlag, Wiesbaden, 2006.Google Scholar
  43. 43.
    L. Kraus: Programming Language C ++ with Solved Tasks, Academic Mind, Belgrade, 2007.Google Scholar
  44. 44.
    L. Kraus: Solved Tasks for the Programming C ++, Academic Mind, Belgrade, 2006. 1.7. Supplement: GIC – software tool for calculating… 133Google Scholar
  45. 45.
    R. C. Leinecker, T. Archer: Visual C ++ 6 Bible, Mikro Knjiga, Belgrade, 1999.Google Scholar
  46. 46.
    A. M. Miri, Z. Stojkovi′c: Transient Electromagnetic Phenomena in the Secondary Circuits of Voltage- and Current Transformers in GIS (Measurements and Calculations), IEEE Transactions on Power Delivery, Vol. 16, No. 4, Oct. 2001, pp. 571-575.Google Scholar
  47. 47.
    A.M. Miri, Z. Stojkovi′c: Transient Electromagnetic Phenomena in the Secondary Circuits of Measuring Transformers in the SF6 Substation, Elektroprivreda, No. 4, 1999, pp. 61-66.Google Scholar
  48. 48.
    Z. Stojkovi′c, A.M. Miri, G. Mitri′c: Estimation of Metal Clad Gas SF6 Insulated Substation Potential Pickup Caused by Switching Disconnector Operations, Elektroprivreda, No.2, 2003, pp. 54-59.Google Scholar
  49. 49.
    W.A. Perry: Quality Assurance for Information Systems: Methods, Tools, and Techniques, QED Information Sciences, Inc, Wellesley, MA 1991.Google Scholar
  50. 50.
    P. Jiantao: Software Testing, Carnegie Mellon University, Spring 1999, (Online), Available, http://www.ece.cmu.edu
  51. 51.
    S. Bo¡stjan¡ci′c,M. Stojanovi′c, R. Nedeljkovi′c: Methodology of Software Testing, 15th Telecommunications Forum, TELFOR 2007, Belgrade, R9-03, Nov. 2007, pp. 577-580.Google Scholar
  52. 52.
    IEEE Std 610.12-1990: IEEE Standard Glossary of Software Engineering Terminology, 1990.Google Scholar
  53. 53.
    E. D. Sunde: Earth Conduction Effects in Transmission Systems, Dower publications, New York, 1968.Google Scholar
  54. 54.
    M.S. Savi′c, Z. Stojkovi′c: High Voltage Substation Equivalent Circuits in the Lightning Performance Estimation, IEE Proceedings - Generation, Transmission and Distribution, Vol. 141, No. 2, March 1994, pp. 99-105.Google Scholar
  55. 55.
    Z. Stojkovi′c, M.S. Savi′c: The High-Voltage Substation Configuration Influence on the Estimated Lightning Performance, Electrical Engineering, Archiv fur elektrotechnik, Vol. 80, No. 4, August 1997, pp. 275-283.Google Scholar
  56. 56.
    Z. Stojkovi′c, M.S. Savi′c: Selection of Type Equivalent Circuits of Substations for the Analysis of the Lightning Overvoltage Protection, 20th Conference of JUKO CIGRE, R33-02, Neum, April 1991.Google Scholar
  57. 57.
    Z. Stojkovi′c: An Improved Method for HV Substation Lightning Performance Estimation, IEEE Transactions on Power Delivery, Vol. 14, No. 3, July 1999, pp. 917-922.Google Scholar
  58. 58.
    Z. Stojkovi′c, M.S. Savi′c: Involvement of High-Voltage Substation Configurations in the Assessment of Stresses of Isolation From Lightning 134 1. Computer-aided modeling and simulation Overvoltages, 21st Conference of JUKO CIGRE, R33-03, Vrnja¡cka Banja, May 1993.Google Scholar
  59. 59.
    B. Dugo¡sija, Z. Stojkovi′c: Application of Numerical Methods and MATLAB Technical Computing Software in Calculation of Grounding Systems, Faculty of Electrical Engineering, University of Belgrade, 2009.Google Scholar
  60. 60.
    Z. Stojkovi′c, ¡Z. Stanki′c: AutoCAD-Based Concept for Estimating Lightning Protection Zone of Transmission Lines and Structures; International Journal of Electrical Engineering Education (IJEEE), Vol.43, No.4, Oct 2006, pp. 299-317.Google Scholar
  61. 61.
    Z. Stojkovi′c: Evaluation of Lightning Protection Zone Using AutoCAD-Based Software Tool, Institute of Power Transmission and High Voltage Technology, University of Stuttgart, Annual Report 2006, pp. 64-67.Google Scholar
  62. 62.
    Z. Stojkovi′c, ¡Z. Stanki′c: Lightning Protection Design of General and Special Buildings, Elektroprivreda, No. 3, 2005, pp. 84-91.Google Scholar
  63. 63.
    Z. Stojkovi′c, ˇZ. Stanki′c: Lightning Protection Design of General and Special Buildings, 27th Conference of JUKO-CIGRE, RC4-01, Zlatibor, 29 May - 3 June 2005.Google Scholar
  64. 64.
    Z. Stojkovi′c, A.Gruji′c, S. Tenbohlen: Lightning Protection Design of Substations and Transmission Lines, 28th Conference of JUKOCIGRE, RC4-01, Vrnjaˇcka Banja, 30 September - 5 October 2007.Google Scholar
  65. 65.
    Z. Stojkovi′c: Transmission Line Tower Grounding Grid Influence to the Line Flashover Rate, 24th Conference of JUKO CIGRE, R33-03, Vrnjaˇcka Banja, October 1999.Google Scholar
  66. 66.
    M. Markovi′c, Z. Stojkovi′c: Analysis of Power Frequency and Impulse Characteristics of a Grounding Grid in Equivalent Uniform Soil, Faculty of Electrical Engineering, University of Belgrade, 2009.Google Scholar
  67. 67.
    Z. Stojkovi′c, V. Cveji′c, S. Joki′c: GIC - Software Tool for Calculation of Grounding Grid Impulse Characteristics, Faculty of Electrical Engineering, Belgrade, 2009.Google Scholar
  68. 68.
    G. Brechmann, C.W. Dzieia, R.E. Hornemann, H.H. Hubscher, L.D. Jagla, N.J. Klaue: Westerman’s Electrical Engineering Handbook, Grad-evinska Knjiga, Belgrade, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Electrical EngineeringUniversity of BelgradeBelgradeSerbia

Personalised recommendations