Models and Algorithmic Tools for Computational Processes in Cellular Biology: Recent Developments and Future Directions

(Invited Keynote Talk)
  • Bhaskar DasGupta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7292)


Over the last few decades, researchers in various fields have witnessed applications of novel computing models and algorithmic paradigms in many application areas involving biological processes, quantum computing, nanotechnology, social networks and many other such disciplines. Typical characteristics of these application areas include their interdisciplinary nature going beyond previous traditional approaches that were used, and often high-risk high-gain nature of resulting collaborations. Major research challenges on a macroscopic level for such collaborations include forming appropriate interdisciplinary teams, effective communication between researchers in diverse areas, using individual expertise for overall goal of the project, and collaboration with industry if necessary. In addition, one also faces the usual challenge that lies in collaboration between theory and practice, namely sometimes theory follows application, sometimes theory precedes application, and sometimes they walk hand-in-hand. Recent and not so recent developments on analysis of models of computational processes in biology, in the context of gene and protein networks that arise in organism development and cell signalling, have given rise to many types of discrete, continuous and hybrid models, and researchers have studied the inter-relationships, powers and limitations, computational complexity and algorithmic issues as well as biological implications and validations of these models. Such investigations have given rise to fascinating interplay between many diverse research areas such as biology, control theory, discrete mathematics and computer science.


Computational Process Algorithmic Issue Signal Transduction Network Reverse Engineer Organism Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, R., DasGupta, B., Gitter, A., Gürsoy, G., Hegde, R., Pal, P., Sivanathan, G.S., Sontag, E.: A New Computationally Efficient Measure of Topological Redundancy of Biological and Social Networks. Physical Review E 84(3), 036117 (2011)CrossRefGoogle Scholar
  2. 2.
    DasGupta, B., Vera-Licona, P., Sontag, E.: Reverse Engineering of Molecular Networks from a Common Combinatorial Approach. In: Elloumi, M., Zomaya, A. (eds.) Algorithms in Computational Molecular Biology: Techniques, Approaches and Applications, ch. 40. John Wiley & Sons, Inc. (2011)Google Scholar
  3. 3.
    Albert, R., DasGupta, B., Sontag, E.: Inference of signal transduction networks from double causal evidence. In: Fenyo, D. (ed.) Methods in Molecular Biology: Topics in Computational Biology, ch. 16, p. 673. Springer Science+Business Media, LLC (2010)Google Scholar
  4. 4.
    Berman, P., DasGupta, B., Karpinski, M.: Approximating Transitive Reductions for Directed Networks. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 74–85. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Albert, R., DasGupta, B., Dondi, R., Sontag, E.: Inferring (Biological) Signal Transduction Networks via Transitive Reductions of Directed Graphs. Algorithmica 51(2), 129–159 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Kachalo, S., Zhang, R., Sontag, E., Albert, R., DasGupta, B.: NET-SYNTHESIS: A software for synthesis, inference and simplification of signal transduction networks. Bioinformatics 24(2), 293–295 (2008)CrossRefGoogle Scholar
  7. 7.
    Berman, P., DasGupta, B., Sontag, E.: Algorithmic Issues in Reverse Engineering of Protein and Gene Networks via the Modular Response Analysis Method. Annals of the New York Academy of Sciences 1115, 132–141 (2007)CrossRefGoogle Scholar
  8. 8.
    Albert, R., DasGupta, B., Dondi, R., Kachalo, S., Sontag, E., Zelikovsky, A., Westbrooks, K.: A Novel Method for Signal Transduction Network Inference from Indirect Experimental Evidence. Journal of Computational Biology 14(7), 927–949 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    DasGupta, B., Enciso, G.A., Sontag, E., Zhang, Y.: Algorithmic and Complexity Results for Decompositions of Biological Networks into Monotone Subsystems. Biosystems 90(1), 161–178 (2007)CrossRefGoogle Scholar
  10. 10.
    Berman, P., DasGupta, B., Sontag, E.: Computational Complexities of Combinatorial Problems With Applications to Reverse Engineering of Biological Networks. In: Wang, F.-Y., Liu, D. (eds.) Advances in Computational Intelligence: Theory and Applications. Series in Intelligent Control and Intelligent Automation, vol. 5, pp. 303–316. World Scientific Publishers (2007)Google Scholar
  11. 11.
    Berman, P., DasGupta, B., Sontag, E.: Randomized Approximation Algorithms for Set Multicover Problems with Applications to Reverse Engineering of Protein and Gene Networks. Discrete Applied Mathematics 155(6-7), 733–749 (2007)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bhaskar DasGupta
    • 1
  1. 1.Department of Computer ScienceUniversity of Illinois at ChicagoUSA

Personalised recommendations