Thunderstorms: Trace Species Generators

  • Heidi Huntrieser
  • Hartmut Höller
  • Volker Grewe
Part of the Research Topics in Aerospace book series (RTA)


In the upper troposphere, both natural and anthropogenic processes control the budget of nitric oxide (NO), a highly reactive and pollutant trace gas. The main local NO sources in the upper troposphere are emissions from aircraft and production by lightning. In the past 20 years, DLR studied the latter source in airborne field experiments accompanied with model simulations. The global lightning NO source is found to be distinctly larger than that from aircraft (factor ~5, uncertainty ~50–100 %). Lightning flashes in tropical regions seem to produce less NO per flash compared to other regions.


Nitric Oxide Convective Available Potential Energy Vertical Wind Shear Mesoscale Convective System Lightning Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work presented here was mainly funded by the European Commission and DLR. During the field campaigns, many colleagues from the DLR Institute of Atmospheric Physics and the DLR Flight Experiments Department contributed to this work.


  1. Chameides, W.L., Davis, D.D., Bradshaw, J., Rodgers, M., Sandholm, S., Bai, D.B.: An estimate of the NOx production rate in electrified clouds based on NO observations from the GTE/CITE 1 fall 1983 field operations. J. Geophys. Res. 92, 2153–2156 (1987). doi: 10.1029/JD092iD02p02153 ADSCrossRefGoogle Scholar
  2. Dahlmann, K., Grewe, V., Ponater, M., Matthes, S.: Quantifying the contributions of individual NOx sources to the trend in ozone radiative forcing. Atmos. Environ. 45(17), 2860–2868 (2011). doi: 10.1016/j.atmosenv.2011.02.071 ADSCrossRefGoogle Scholar
  3. Dickerson, R.R., Huffman, G.J., Luke, W.T., Nunnermacker, L.J., Pickering, K.E., Leslie, A.C.D., Lindsey, C.G., Slinn, W.G.N., Kelly, T.J., Daum, P.H., et al.: Thunderstorms: an important mechanism in the transport of air pollutants. Science 235, 460–465 (1987). doi: 10.1126/science.235.4787.460 ADSCrossRefGoogle Scholar
  4. Fehr, T., Höller, H., Huntrieser, H.: Model study on production and transport of lightning-produced NOx in an EULINOX supercell storm. J. Geophys. Res. 109,   (2004). doi: 10.1029/2003JD003935 CrossRefGoogle Scholar
  5. Grewe, V., Brunner, D., Dameris, M., Grenfell, J.L., Hein, R., Shindell, D., Staehelin, J.: Origin and variability of upper tropospheric nitrogen oxides and ozone at northern mid-latitudes. Atmos. Environ. 35, 3421–3433 (2001). doi: 10.1016/S1352-2310(01)00134-0 CrossRefGoogle Scholar
  6. Grewe, V.: Impact of climate variability on tropospheric ozone. Sci. Total Environ. 374, 167–181 (2007)CrossRefGoogle Scholar
  7. Grewe, V.: Impact of lightning on air chemistry and climate. In: H. D. Betz, U. Schumann, and P. Laroche, (eds.) Lightning: Principles, Instruments and Applications Review of Modern Lightning Research, 524–551. Springer, Heidelberg (2009)Google Scholar
  8. Hauf, T., Schulte,P., Alheit, R., Schlager, H.: Rapid vertical trace gas transport by an isolated midlatitude thunderstorm. J. Geophys. Res. 100 (D11), 22957–22970 (1995). doi: 10.1029/95JD02324 Google Scholar
  9. Höller, H., Finke, U., Huntrieser, H., Hagen, M.,Feigl, C.: Lightning-produced NOx (LINOX): Experimental design and case study results. J. Geophys. Res. 104 (D11), 13,911–913,922, (1999). doi: 10.1029/1999JD900019
  10. Höller, H., Betz, H.-D., Schmidt, K., Calheiros, R.V., May, P., Houngninou, E., Scialom, G.: Lightning characteristics observed by a VLF/LF lightning detection network (LINET) in Brazil, Australia, Africa and Germany. Atmos. Chem. Phys. 9, 7795–7824 (2009). doi: 10.5194/acp-9-7795-2009 ADSCrossRefGoogle Scholar
  11. Houze, R. A.: Mesoscale convective systems. Rev. Geophys. 42, RG4003, (2004). doi: 10.1029/2004RG000150
  12. Huntrieser, H., Schlager, H., Feigl, C., Höller, H.: Transport and production of NOx in electrified thunderstorms: survey of previous studies and new observations at mid-latitudes. J. Geophys. Res. 103 (D21), 28,247–228,264, (1998). doi: 10.1029/98JD02353
  13. Huntrieser, H., Feigl, C., Schlager, H., Schröder, F., Gerbig, C., van Velthoven, P., Flatøy, F., Théry, C., Petzold, A., Höller, H.: Airborne measurements of NOx, tracer species, and small particles during the European lightning nitrogen oxides experiment. J. Geophys. Res., 107 (D11), 4113, (2002) doi: 10.1029/2000JD000209
  14. Huntrieser, H., Schlager, H., Roiger, A., Lichtenstern, M., Schumann, U., Kurz, C., Brunner, D., Schwierz, C., Richter, A., Stohl, A.: Lightning-produced NOx over Brazil during TROCCINOX: airborne measurements in tropical and subtropical thunderstorms and the importance of mesoscale convective systems. Atmos. Chem. Phys. 7, 2987–3013 (2007). doi: 10.5194/acp-7-2987-2007 ADSCrossRefGoogle Scholar
  15. Huntrieser, H., Schumann, U., Schlager, H., Höller, H., Giez, A., Betz, H.-D., Brunner, D., Forster, C., Pinto Jr, O., Calheiros, R.: Lightning activity in Brazilian thunderstorms during TROCCINOX: implications for NOx production. Atmos. Chem. Phys. 8, 921–953 (2008). doi: 10.5194/acp-8-921-2008 ADSCrossRefGoogle Scholar
  16. Huntrieser, H., Schlager, H., Lichtenstern, M., Roiger, A., Stock, P., Minikin, A., Höller, H., Schmidt, K., Betz, H.-D., Allen, G., et al.: NOx production by lightning in hector: first airborne measurements during SCOUT-O3/ACTIVE. Atmos. Chem. Phys. 9, 8377–8412 (2009). doi: 10.5194/acp-9-8377-2009 ADSCrossRefGoogle Scholar
  17. Huntrieser, H., Schlager, H., Lichtenstern, M., Stock, P., Hamburger, T., Höller, H., Schmidt, K., Betz, H.-D., Ulanovsky, A., Ravegnani, F.: Mesoscale convective systems observed during AMMA and their impact on the NOx and O3 budget over West Africa. Atmos. Chem. Phys. 11, 2503–2536 (2011). doi: 10.5194/acp-11-2503-2011 ADSCrossRefGoogle Scholar
  18. Kurz, C.: Entwicklung und Anwendung eines gekoppelten Klima-Chemie-Modellsystems, p. 142. Doctoral Dissertation, Ludwig-Maximilians-Universität München (2006)Google Scholar
  19. Meijer, E.W., van Velthoven, P.F.J., Brunner, D., Huntrieser, H., Kelder, H.: Improvement and evaluation of the parameterization of nitrogen oxide production by lightning. Phys. Chem. Earth (C) 26, 577–583 (2001)Google Scholar
  20. Ott, L.E., Pickering, K.E., Stenchikov, G.L., Huntrieser, H., Schumann, U.: Effects of lightning NOx production during the 21 July European Lightning Nitrogen Oxides Project storm studied with a three-dimensional cloud-scale chemical transport model. J. Geophys. Res. 112, D05307 (2007). doi: 10.1029/2006JD007365 ADSCrossRefGoogle Scholar
  21. Ott, L.E., Pickering, K.E., Stenchikov, G.L., Allen, D.J., DeCaria, A.J., Ridley, B., Lin, R.-F., Lang, S., Tao, W.-K.: Production of lightning NOx and its vertical distribution calculated from three-dimensional cloud-scale chemical transport model simulations. J. Geophys. Res. 115, D04301 (2010). doi: 10.1029/2009JD011880 ADSCrossRefGoogle Scholar
  22. Pickering, K. E., Huntrieser, H., Schumann, U.: In: H.-D. Betz, U. Schumann, P. Laroche, (eds.), Lightning and NOx production in global models. lightning: principles, instruments and applications review of modern lightning research, pp. 551–571, Springer Heidelberg (2009)Google Scholar
  23. Schumann, U., Huntrieser, H.: The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys. 7, 3823–3907 (2007). doi: 10.5194/acp-7-3823-2007 ADSCrossRefGoogle Scholar
  24. von Liebig, J.: Une note sur la nitrification. Ann. Chem. Phys. 35, 329–333 (1827)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Heidi Huntrieser
    • 1
  • Hartmut Höller
    • 1
  • Volker Grewe
    • 1
  1. 1.DLR, Institute of Atmospheric Physics (IPA)OberpfaffenhofenGermany

Personalised recommendations