Advertisement

Methane Modeling: From Process Modeling to Global Climate Models

  • Andrea Stenke
  • Rudolf Deckert
  • Klaus-Dirk Gottschaldt
Chapter
Part of the Research Topics in Aerospace book series (RTA)

Abstract

Methane is a long-lived greenhouse gas playing an important role in global climate change. Since preindustrial times atmospheric CH4 concentrations have more than doubled. The global CH4 budget is determined by the balance between surface emissions and different sink processes. Model projections of future atmospheric CH4 concentrations are complicated by uncertainties not only in the strength of individual CH4 sources, but also by uncertainties in other trace species affecting the major CH4 loss reaction.

Keywords

Global Warming Potential Wetland Hydrology Polar Stratospheric Cloud Subsea Permafrost Wetland Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amediek, A., Fix, A., Ehret, G., Caron, J., Durand, Y.: Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2. Atmos. Meas. Tech. 2, 755–772 (2009). doi: 10.5194/amt-2-755-2009 CrossRefGoogle Scholar
  2. Bogner, J., Abdelrafie Ahmed, M., Diaz, C., Faaij, A., Gao, Q., Hashimoto, S., Mareckova, K., Pipatti, R., Zhang, T.: Waste management. In: Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A. (eds.) Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge (2007)Google Scholar
  3. Butkovskaya, N., Rayez, M.-T., Kukui, A., Le Bras, G.: Water vapor effect on the HNO3 yield in the HO2 + NO reaction: experimental and theoretical evidence. J. Phys. Chem. A 113, 11327–11342 (2009). doi: 10.1021/jp811428p CrossRefGoogle Scholar
  4. Deckert, R., Jöckel, P., Grewe, V., Gottschaldt, K.-D., Hoor, P.: A quasi chemistry-transport model mode for EMAC. Geosci. Model Dev. 4, (2011). doi: 10.5194/gmd-4-195-2011
  5. Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P.M., Dickinson, R. E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D. et al.: Couplings between changes in the climate system and biogeochemistry. In: Solomon, S., and Coauthors (eds.) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2007)Google Scholar
  6. Enting, I.G.: Inverse Problems in Atmospheric Constituent Transport. Cambridge University Press, Cambridge, 408 pp. (2002)Google Scholar
  7. Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T. Betts, R., Fahey, D.W., Haywood, J. Lean, J. Lowe, D.C., Myhre, G., et al.: Changes in Atmospheric Constituents and in Radiative Forcing. In: Solomon, S., and Coauthors (eds.) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press (2007)Google Scholar
  8. IUPAC, cited 2007: IUPAC Subcommittee on Gas Kinetic Data Evaluation - Data Sheet HOx_VOC1, updated 12th December 2007. Available at http://www.iupac-kinetic.ch.cam.ac.uk/index.html
  9. Jöckel, P., Brenninkmeijer, C.A.M., Crutzen, P.J.: A discussion on the determination of atmospheric OH and its trends. Atmos. Chem. Phys. 3, 107–118 (2003). doi: 10.5194/acp-3-107-2003 ADSCrossRefGoogle Scholar
  10. Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., Gromov, S., Kern, B.: Development cycle 2 of the modular earth submodel system (MESSy2). Geosci. Model Dev. 3, 717–752 (2010). doi: 10.5194/gmd-3-717-2010 ADSCrossRefGoogle Scholar
  11. Khalil, M.A.K. (ed.): Atmospheric Methane: Its Role in the Global Environment. Springer, Berlin, 351 pp. (2000)Google Scholar
  12. Montzka, S.A., Krol, M., Dlugokencky, E., Hall, B., Jöckel, P., Lelieveld, J.: Small interannual variability of global atmospheric hydroxyl. Science 331, 67–69 (2011). doi: 10.1126/science.1197640 ADSCrossRefGoogle Scholar
  13. Morino, I., Uchino, O., Inoue, M., Yoshida, Y., Yokota, T., Wennberg, P.O., Toon, G.C., Wunch, D., Roehl, C.M., Notholt, J., et al.: Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra. Atmos. Meas. Tech. 4, 1061–1076 (2011). doi: 10.5194/amt-4-1061-2011 CrossRefGoogle Scholar
  14. Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., van Vuuren, D.P., Carter, T.R., Emori, S., Kainuma, M., Kram, T., et al.: The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010). doi: 10.1038/nature08823 ADSCrossRefGoogle Scholar
  15. O’Connor, F.M., Boucher, O., Gedney, N., Jones, C.D., Folberth, G.A., Coppell, R., Friedlingstein, P., Collins, W. J., Chappellaz, J., Ridley, J. et al.: Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: a review. Rev. Geophys. 48, RG4005, (2010). doi: 10.1029/2010RG000326
  16. Sander, S.P., Barker, J.R., Golden, D.M., Kurylo, M.J., Wine, P.H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 17, Pasadena, CA, Jet Propulsion Laboratory, JPL Publication 10-6 (2011)Google Scholar
  17. Schneising, O., Buchwitz, M., Reuter, M., Heymann, J., Bovensmann, H., Burrows, J.P.: Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY. Atmos. Chem. Phys. 11, 2863–2880 (2011). doi: 10.5194/acp-11-2863-2011 ADSCrossRefGoogle Scholar
  18. Shindell, D., Kuylenstierna, J.C.I., Vignati, E., van Dingenen, R., Amann, M., Klimont, Z., Anenberg, S.C., Muller, N., Janssens-Maenhout, G., Raes, F., et al.: Simultaneously mitigating near-term climate change and improving human health and food security. Science 335, 183–189 (2012). doi: 10.1126/science.1210026 ADSCrossRefGoogle Scholar
  19. Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H.H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., et al.: Greenhouse gas mitigation in agriculture. Philos. Trans. Roy. Soc. B 363, (2007). doi: 10.1098/rstb.2007.2184
  20. Taraborrelli, D., Lawrence, M.G., Crowley, J.N., Dillon, T.J., Gromov, S., Groß, C.B.M., Vereecken, L., Lelieveld, J.: Hydroxyl radical buffered by isoprene oxidation over tropical forests. Nature Geosci. 5, 190–193 (2012). doi: 10.1038/ngeo1405 ADSCrossRefGoogle Scholar
  21. Wania, R., Ross, I., Prentice, I.C.: Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ-WHyMe v1.3.1. Geosci. Model Dev. 3, 565–584 (2010). doi: 10.5194/gmd-3-565-2010 ADSCrossRefGoogle Scholar
  22. WMO: WMO Greenhouse Gas Bulletin, The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2010, No. 7 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andrea Stenke
    • 1
  • Rudolf Deckert
    • 2
  • Klaus-Dirk Gottschaldt
    • 2
  1. 1.Institute for Atmospheric and Climate ScienceETH ZürichZürichSwitzerland
  2. 2.DLR, Institute of Atmospheric Physics (IPA)OberpfaffenhofenGermany

Personalised recommendations