Advertisement

Recent and Future Evolution of the Stratospheric Ozone Layer

  • Martin Dameris
  • Diego Loyola
Chapter
Part of the Research Topics in Aerospace book series (RTA)

Abstract

Since the early 1980s significant depletion of the ozone layer in the stratosphere, in other words the ozone hole, has been observed every year over the South Pole area in Antarctic spring. In the meantime destruction of stratospheric ozone has been detected globally. Emissions of man-made halogenated chemicals play a dominant role in ozone loss. Combined analyses of observations and numerical modeling help to understand the complex interplay of the dynamic and chemical processes involved. Evaluated models provide a base for predicting the future recovery of the ozone layer expected for the middle of this century.

Keywords

Ozone Layer Total Ozone Stratospheric Ozone Lower Stratosphere Total Ozone Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bates, D.R., Nicolet, M.: The photochemistry of atmospheric water. J. Geophys. Res. 55, 301–327 (1950)ADSCrossRefGoogle Scholar
  2. Carslaw, K.S., Peter, T., Clegg, S.L.: Modeling the composition of liquid stratospheric aerosols. Rev. Geophys. 35(2), 125–154 (1997). doi: 10.1029/97RG00078 ADSCrossRefGoogle Scholar
  3. Crutzen, P.J.: Ozone production rates in an oxygen-hydrogen-nitrogen oxide atmosphere. J. Geophys. Res. 76, 7311–7327 (1971)ADSCrossRefGoogle Scholar
  4. Dameris, M., Nodorp, D., Sausen, R.: Correlation analysis of tropopause height and TOMS-data for the EASOE-winter 1991/1992. Beitr. Phys. Atmos. 68, 227–232 (1995)Google Scholar
  5. Dameris, M., Grewe, V., Hein, R., Schnadt, C., Brühl, C., Steil, B.: Assessment of the future development of the ozone layer. Geophys. Res. Lett. 25, 3579–3582 (1998)ADSCrossRefGoogle Scholar
  6. Dameris, M., Grewe, V., Ponater, M., Deckert, R., Eyring, V., Mager, F., Matthes, S., Schnadt, C., Stenke, A., Steil, B., et al.: Long-term changes and variability in a transient simulation with a chemistry-climate model employing realistic forcing. Atmos. Chem. Phys. 5, 2121–2145 (2005)ADSCrossRefGoogle Scholar
  7. Dameris, M., Matthes, S., Deckert, R., Grewe, V., Ponater, M.: Solar cycle effect delays onset of ozone recovery. Geophys. Res. Lett. 33, L03806 (2006). doi: 10.1029/2005GL024741 CrossRefGoogle Scholar
  8. Dameris, M., Baldwin, M.P.: Impact of climate change on the stratospheric ozone layer. In: Müller, R. (ed.) Stratospheric Ozone Depletion and Climate Change, pp. 214–252. RSC Publishing, Cambridge CB40WF (2011)Google Scholar
  9. Dörnbrack, A., Birner, T., Fix, A., Flentje, H., Meister, A., Schmid, H., Browell, E., Mahoney, V.: Evidence for inertia gravity waves forming polar stratospheric clouds over Scandinavia. J. Geophys. Res. 107 (D20), 8287 (2002). doi: 10.1029/2001JD000452 Google Scholar
  10. Fabry, C., Buisson, H.: L’absorption de l’ultraviolet par l’ozone et la limite du spectre solaire. J. Phys. 3(Série 5), 196–206 (1913)Google Scholar
  11. Farman, J.C., Gardiner, B.G., Shanklin, J.D.: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315, 207–210 (1985)ADSCrossRefGoogle Scholar
  12. Loyola, D.G., Coldewey-Egbers, M., Dameris, M., Garny, H., Stenke, A., van Roozendael, M., Lerots, C., Balis, D., Koukouli, M.: Global long-term monitoring of the ozone layer—a prerequisite for predictions. Int. J. Rem. Sens. 30, 4295–4318 (2009)CrossRefGoogle Scholar
  13. Molina, M.J., Rowland, F.S.: Stratospheric sink for chlorofluoromethanes: chlorine atom-catalyzed destruction of ozone. Nature 249, 810–812 (1974)ADSCrossRefGoogle Scholar
  14. Ravishankara, A.R., Daniel, J.S., Portmann, R.W.: Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009)ADSCrossRefGoogle Scholar
  15. Schumann, U.: Large-eddy simulation of turbulent diffusion with chemical reactions in the convective boundary layer. Atmos. Environ. 23, 1713–1727 (1989)CrossRefGoogle Scholar
  16. Solomon, S., Garcia, R.R., Rowland, F.S., Wuebbles, D.J.: On the depletion of Antarctic ozone. Nature 321, 755–758 (1986)ADSCrossRefGoogle Scholar
  17. Solomon, S.: Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 37(3), 275–316 (1999)ADSCrossRefGoogle Scholar
  18. SPARC CCMVal: SPARC Report on the Evaluation of Chemistry-Climate Models. In: Eyring, V., Shepherd, T.G., Waugh, D.W. (eds.) SPARC Report No. 5, WCRP-132, WMO/TD-No. 1526 (2010)Google Scholar
  19. Steil, B., Dameris, M., Brühl, C., Crutzen, P.J., Grewe, V., Ponater, M., Sausen, R.: Development of a chemistry module for GCMs: first results of a multiannual integration. Ann. Geophys. 16, 205–228 (1998)ADSCrossRefGoogle Scholar
  20. Stenke, A., Dameris, M., Grewe, V., Garny, H.: Implications of Lagrangian transport for simulations with a coupled chemistry-climate model. Atmos. Chem. Phys. 9, 5489–5504 (2009)ADSCrossRefGoogle Scholar
  21. Voigt, C., Schreiner, J., Kohlmann, A., Zink, P., Mauersberger, K., Larsen, N., Deshler, T., Kröger, C., Rosen, J., Adriani, A., et al.: Nitric acid trihydrate (NAT) in polar stratospheric clouds. Science 290, 1756–1758 (2000)ADSCrossRefGoogle Scholar
  22. Voigt, C., Schlager, H., Luo, B.P., Dörnbrack, A., Roiger, A., Stock, P., Curtius, J., Vössing, H., Borrmann, S., Davies, S., et al.: Nitric acid trihydrate (NAT) formation at low NAT supersaturation in polar stratospheric clouds (PSCs). Atmos. Chem. Phys. 5, 1371–1380 (2005)ADSCrossRefGoogle Scholar
  23. Volkert, H., Intes, D.: Orographically forced stratospheric waves over northern Scandinavia. Geophys. Res. Lett. 19, 1205–1208 (1992)ADSCrossRefGoogle Scholar
  24. Wirth, M., Renger, W.: Evidence of large scale ozone depletion within the Arctic polar vortex 94/95 based on airborne LIDAR. Geophys. Res. Lett. 13, 813–816 (1996)ADSCrossRefGoogle Scholar
  25. Wirth, M., Tsias, A. Dörnbrack, A., Weiß, V., Carslaw, K.S., Leutbecher, M., Renger, W., Volkert, H., Peter, T.: Model-guided Lagrangian observation and simulation of mountain polar stratospheric clouds. J. Geophys. Res. 104 (D19) (1999). doi: 10.1029/1998JD100095
  26. WMO (World Meteorological Organization): Scientific Assessment of Ozone Depletion: 2010. Global Ozone Research and Monitoring Project, Report No. 52, Geneva (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.DLR, Institute of Atmospheric Physics (IPA)OberpfaffenhofenGermany
  2. 2.DLR, Remote Sensing Technology Institute (IMF)WesslingGermany

Personalised recommendations