Climate Optimized Air Transport

  • Sigrun Matthes
  • Ulrich Schumann
  • Volker Grewe
  • Christine Frömming
  • Katrin Dahlmann
  • Alexander Koch
  • Hermann Mannstein
Part of the Research Topics in Aerospace book series (RTA)


Aviation climate impact is caused by CO2 and non-CO2 emissions where the climate effect of non-CO2 emissions depends on weather and aircraft route. An aviation system with minimum climate impact differs from a system with minimum emissions. Considerable potential exists to reduce the climate impact of aviation by weather- and cost-dependent climate-optimized air traffic management (“smart routing”) and aircraft design (“green aircraft”). Current research provides a unique opportunity to systematically investigate the trade-offs between various mitigation concepts and cost functions. Here various approaches are presented to minimize the climate impact on a climatological and weather basis, some being applicable to aircraft designs for reduced climate impact and others offering alternative operational concepts.


Fuel Consumption Climate Impact Radiative Force Emission Location Mitigation Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Brasseur, G.P., Cox, R.A., Hauglustaine, D., Isaksen, I., Lelieveld, J., Lister, D.H., Sausen, R., Schumann, U., Wahner, A., Wiesen, P.: European scientific assessment of the atmospheric effects of aircraft emissions. Atmos. Environ. 32, 2329–2418 (1998)CrossRefGoogle Scholar
  2. Burkhardt, U., Kärcher, B.: Global radiative forcing from contrail cirrus. Nat. Clim. Change 1, 54–58 (2011). doi: 10.1038/NCLIMATE1068 ADSCrossRefGoogle Scholar
  3. Campbell, S.E., Neogi, N.A., Bragg, N.B.: An operational strategy for persistent contrail mitigation. 9th AIAA Aviation Technology, Integration, and Operations Conference (ATIO), pp. 1–14 (2009)Google Scholar
  4. Döpelheuer, A., Lecht, M.: Influence of engine performance on emission characteristics. Gas Turbine Engine Combustion, Emissions and Alternative Fuels, RTO MP-14, ISBN 92-837-0009-0, p. 20, 11 (1999)Google Scholar
  5. Fichter, C., Marquart, S., Sausen, R., Lee, D.S.: The impact of cruise altitude on contrails and related radiative forcing. Meteorol. Z. 14, 563–572 (2005). doi: 10.1127/0941-2948/2005/0048 CrossRefGoogle Scholar
  6. Fichter, C.: Climate impact of air traffic emissions in dependency of the emission location and altitude. DLR Forschungsbericht 2009-22, ISSN 1434-84543, Oberpfaffenhofen, 152 pp (2009)Google Scholar
  7. Fuglestvedt, J.S., Shine, K.P., Berntsen, T., Cook, J., Lee, D.S., Stenke, A., Skeie, R.B., Velders, G.J.M., Waitz, I.A.: Transport impacts on atmosphere and climate: Metrics. Atmos. Environ. 44, 4648–4677 (2010). doi: 10.1016/j.atmosenv.2009.04.044 ADSCrossRefGoogle Scholar
  8. Gauss, M., Isaksen, I.S.A., Wong, S., Wang, W.-C.: Impact of H2O emissions from cryoplanes and kerosene aircraft on the atmosphere. J. Geophys. Res. 108, 4304 (2003). doi: 10.1029/2002JD002623 CrossRefGoogle Scholar
  9. Gauss, M., Isaksen, I.S.A., Lee, D.S., Søvde, O.A.: Impact of aircraft NOx emissions on the atmosphere—tradeoffs to reduce the impact. Atmos. Chem. Phys. 6, 1529–1548 (2006)ADSCrossRefGoogle Scholar
  10. Gierens, K., Spichtinger, P.: On the size distribution of ice-supersaturated regions in the upper troposphere and lowermost stratosphere. Ann. Geophys. 18, 499–504 (2000). doi: 10.1007/s00585-000-0499-7 ADSCrossRefGoogle Scholar
  11. Gierens, K., Lim, L., Eleftheratos, K.: A review of various strategies for contrail avoidance. Open Atmos. Sci. J. 2, 1–7 (2008)ADSCrossRefGoogle Scholar
  12. Green, J.E.: Future aircraft—greener by design? Meteorol. Z. 14, 583–590 (2005). doi: 10.1127/0941-2948/2005/0052 CrossRefGoogle Scholar
  13. Grewe, V., Dameris, M., Fichter, C., Lee, D.S.: Impact of aircraft NOx emissions. Part 2: Effects of lowering the flight altitude. Meteorol. Z. 11, 197–205 (2002)CrossRefGoogle Scholar
  14. Grewe, V., Stenke, A.: AirClim: An efficient tool for climate evaluation of aircraft technology. Atmos. Chem. Phys. 8, 4621–4639 (2008). doi: 10.5194/acp-8-4621-2008 ADSCrossRefGoogle Scholar
  15. Grewe, V., Tsati, E., Hoor, P.: On the attribution of contributions of atmospheric trace gases to emissions in atmospheric model applications. Geosci. Model Dev. 3, 487–499 (2010). doi: 10.5194/gmd-3-487-2010 ADSCrossRefGoogle Scholar
  16. Grooß, J.-U., Brühl, C., Peter, T.: Impact of aircraft emissions on tropospheric and stratospheric ozone. Part I: Chemistry and 2-D model results. Atmos. Environ. 32, 3173–3184 (1998)CrossRefGoogle Scholar
  17. Haywood, J.M., Allan, R.P., Bornemann, J., Forster, P.M., Francis, P.N., Milton, S., Rädel, G., Rap, A., Shine, K.P., Thorpe, R.: A case study of the radiative forcing of persistent contrails evolving into contrail-induced cirrus. J. Geophys. Res. 114, D24201 (2009). doi: 10.1029/2009JD012650 ADSCrossRefGoogle Scholar
  18. Hendricks, J., Kärcher, B., Lohmann, U.: Effects of ice nuclei on cirrus clouds in a global climate model. J. Geophys. Res. 116, D18206 (2011). doi: 10.1029/2010JD015302 ADSCrossRefGoogle Scholar
  19. HLGAR.: Flightpath 2050—Europe’s Vision for Aviation 2011: Report of the High Level Group on Aviation Research (HLGAR), Luxembourg: Publications Office of the European Union, ISBN 978-92-79-19724-6, (2011). doi:  10.2777/50266
  20. Holmes, C.D., Tang, Q., Prather, M.J.: Uncertainties in climate assessment for the case of aviation NO. PNAS, 6, (2011). doi: 10.1073/pnas.1101458108
  21. IPCC: Aviation and the Global Atmosphere. Cambridge University Press, Cambridge (1999). 373 ppGoogle Scholar
  22. Irvine, E.A., Hoskins, B.J., Shine, K.P., Lunnon, R.W., Frömming, C.: Characterizing North Atlantic weather patterns for climate-optimal aircraft routing. Meteorol. Appl. (2012). doi: 10.1002/met.1291
  23. Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., Gromov, S., Kern, B.: Development cycle 2 of the modular earth submodel system (MESSy2). Geosci. Model Dev. 3, 717–752 (2010). doi: 10.5194/gmd-3-717-2010 ADSCrossRefGoogle Scholar
  24. Kärcher, B., Möhler, O., DeMott, P.J., Pechtl, S., Yu, F.: Insights into the role of soot aerosols in cirrus cloud formation. Atmos. Chem. Phys. 7, 4203–4227 (2007)ADSCrossRefGoogle Scholar
  25. Kärcher, B., Yu, F.: Role of aircraft soot emissions in contrail formation. Geophys. Res. Lett. 36, L01804 (2009). doi: 10.1029/2008GL036649 CrossRefGoogle Scholar
  26. Klima, K.: Assessment of a global contrail modeling method and operational strategies for contrail mitigation. Thesis for a Master of Science, Aeronautics and Astronautics at the Massachusetts Institute of Technology (2005)Google Scholar
  27. Klug, H.G., Bakan, S., Gayler, V.: Cryoplane—Quantitative Comparison of Contribution to Anthropogenic Greenhouse Effect of Liquid Hydrogen Aircraft Versus Conventional Aircraft. European Geophysical Society, XXI, General Assembly, The Hague, The Netherlands (1996). 22Google Scholar
  28. Koch, A., Lührs, B., Dahlmann, K., Linke, F., Grewe, V., Litz, M., Plohr, M., Nagel, B., Gollnick, V., Schumann, U.: Climate impact assessment of varying cruise flight altitudes applying the CATS simulation approach. CEAS 2011 The International Conference of the European Aerospace Societies, p. 12 (2011)Google Scholar
  29. Köhler, M.O., Rädel, G., Dessens, O., Shine, K.P., Rogers, H., Wild, O., Pyle, J.A.: Impact of perturbations to nitrogen oxide emissions from global aviation. J. Geophys. Res. 113, D11305 (2008). doi: 10.1029/2007JD009140 ADSCrossRefGoogle Scholar
  30. Linke, F., Langhans, S., Gollnick, V.: Global fuel analysis of intermediate stop operations on long-haul routes. 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, AIAA 2011-6884. Virginia Beach, USA (2011)Google Scholar
  31. Lee, D.S., Fahey, D.W., Forster, P.M., Newton, P.J., Wit, R.C.N., Lim, L.L., Owen, B., Sausen, R.: Aviation and global climate change in the 21st century. Atmos. Environ. 43, 3520–3537 (2009). doi: 10.1016/j.atmosenv.2009.04.024 CrossRefGoogle Scholar
  32. Lee, D.S., Pitari, G., Grewe, V., Gierens, K., Penner, J.E., Petzold, A., Prather, M.J., Schumann, U., Bais, A., Berntsen, T., et al.: Transport impacts on atmosphere and climate: Aviation. Atmos. Environ. 44, 4678–4734 (2010). doi: 10.1016/j.atmosenv.2009.06.005 ADSCrossRefGoogle Scholar
  33. Mannstein, H., Spichtinger, P., Gierens, K.: How to avoid contrail cirrus. Transp. Res. D 10, 421–426 (2005)Google Scholar
  34. Mannstein, H.: Umweltgerechte Flugrouten-Optimierung (UFO)—Endbericht, DLR and Lufthansa, 61 pp. (2011)Google Scholar
  35. Mannstein, H., Schumann, U.: Gierens, K., Meilinger, S., Waibel, A.: Verfahren und Vorrichtung zur klimaoptimierten Flugplanung. Submitted Patent, 2012Google Scholar
  36. Marquart, S., Sausen, R., Ponater, M., Grewe, V.: Estimate of the climate impact of Cryoplanes. Aerosp. Sci. Technol. 5, 73–84 (2001)CrossRefGoogle Scholar
  37. Matthes, S.: Climate-optimised flight planning—REACT4C in Innovation for a Sustainable Avation in a Global Environment, Proceedings of the Sixth European Aeronautics Days 2011, IOS Press & European Union (2012) ISBN 978-92--79-22968-8Google Scholar
  38. Meerkötter, R., Schumann, U., Minnis, P., Doelling, D.R., Nakajima, T., Tsushima, Y.: Radiative forcing by contrails. Ann. Geophys. 17, 1080–1094 (1999). doi: 10.1007/s00585-999-1080-7 ADSCrossRefGoogle Scholar
  39. Penner, J.E., Chen, Y., Wang, M., Liu, X.: Possible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcing. Atmos. Chem. Phys. 9, 879–896 (2009). doi: 10.5194/acp-9-879-2009 ADSCrossRefGoogle Scholar
  40. Ponater, M., Pechtl, S., Sausen, R., Schumann, U., Hüttig, G.: Potential of the cryoplane technology to reduce aircraft climate impact: A state-of-the-art assessment. Atmos. Environ. 40, 6928–6944 (2006). doi: 10.1016/j.atmosenv.2006.06.036 CrossRefGoogle Scholar
  41. Rädel, G., Shine, K.P.: Radiative forcing by persistent contrails and its dependence on cruise altitudes. J. Geophys. Res. 113, D07105 (2008). doi: 10.1029/2007JD009117 ADSCrossRefGoogle Scholar
  42. Sausen, R., Nodorp, D., Land, C.: Towards an optimal flight routing with respect to minimal environmental impact. In: Schumann, U., Wurzel, D. (eds.) Impact of Emissions from Aircraft and Spacecraft upon the Atmosphere. Procedings of an International Science Colloquium, Köln (Cologne), Germany, April 18–20, pp. 473–478 (1994). ISSN 0939-298XGoogle Scholar
  43. Sausen, R., Gierens, K., Ponater, M., Schumann, U.: A diagnostic study of the global distribution of contrails. Part I: Present day climate. Theor. Appl. Clim. 61, 127–141 (1998)ADSCrossRefGoogle Scholar
  44. Sausen, R., Schumann, U.: Estimates of the climate response to aircraft CO2 and NOx-emission scenarios. Clim. Change 44, 27–58 (2000)CrossRefGoogle Scholar
  45. Schumann, U.: On the effect of emissions from aircraft engines on the state of the atmosphere. Ann. Geophys. 12, 365–384 (1994)ADSCrossRefGoogle Scholar
  46. Schumann, U.: On conditions for contrail formation from aircraft exhausts. Meteorol. Z. 5, 4–23 (1996)Google Scholar
  47. Schumann, U.: Contrail Cirrus. In: Lynch, D.K., Sassen, K., Starr, D.O’C., Stephens, G. (eds.) Cirrus. Oxford University Press, Oxford, pp. 231–255 (2002)Google Scholar
  48. Schumann, U.: Formation, properties and climate effects of contrails. Compt. Rend. Phys. 6, 549–565 (2005)ADSCrossRefGoogle Scholar
  49. Schumann, U.: A contrail cirrus prediction model. Geosci. Model Dev. 5, 543–580 (2011). doi: 10.5194/gmd-5-543-2012 ADSGoogle Scholar
  50. Schumann, U., Graf, K., Mannstein, H.: Potential to reduce the climate impact of aviation by flight level changes. 3rd AIAA Atmospheric and Space Environments Conference AIAA paper 2011–3376, 1–22 (2011)Google Scholar
  51. Schumann, U., Mayer, B., Graf, K., Mannstein, H.: A parametric radiative forcing model for contrail cirrus. J. Appl. Meteorol. Clim. 51 (2012) 10.1175/JAMC-D-11-0242.1 Google Scholar
  52. Schwartz Dallara, E., Kroo, I.M., Waitz, I.: Metric for comparing lifetime averaged climate impact of aircraft. AIAA J. 49, 1600–1613 (2011)ADSCrossRefGoogle Scholar
  53. Spichtinger, P., Gierens, K., Leiterer, U., Dier, H.: Ice supersaturation in the tropopause region over Lindenberg. Ger. Meteorol. Z. 12, 143–156 (2003). doi: 10.1127/0941-2948/2003/0012-0143 CrossRefGoogle Scholar
  54. Sridhar, B., Chen, N.Y., Ng, H.K., Linke, F.: Design of aircraft trajectories based on trade-offs between emission sources. 9th USA/Europe Air Traffic Management Research and Development Seminar (ATM2011). (2011)
  55. Ström, L., Gierens, K.: First simulations of cryoplane contrails. J. Geophys. Res. 107, 4346 (2002). doi: 10.1029/2001JD000838 CrossRefGoogle Scholar
  56. Vazquez-Navarro, M.R.: Life cycle of contrails from a time series of geostationary satellite images, DLR-FB 2010-19, 146 pp (2009)Google Scholar
  57. Waitz, I., Townsend, J., Cutcher-Gershenfeld, J., Greitzer, E., Kerebrock, J. (eds.) Aviation and the Environment—Report to the United States Congress, A National Vision Statement, Framework for Goals and Recommended Actions. Massachusetts Institute of Technology, under FAA Cooperative Agreement No. 03-C-NE-MIT, 52 pp (2004)Google Scholar
  58. Williams, V., Noland, R.B., Toumi, R.: Reducing the climate change impacts of aviation by restricting cruise altitudes. Transp. Res. D7, 451–464 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sigrun Matthes
    • 1
  • Ulrich Schumann
    • 1
  • Volker Grewe
    • 1
  • Christine Frömming
    • 1
  • Katrin Dahlmann
    • 1
  • Alexander Koch
    • 2
  • Hermann Mannstein
    • 1
  1. 1.DLR, Institute of Atmospheric Physics (IPA)OberpfaffenhofenGermany
  2. 2.DLR Air Transportation SystemsHamburgGermany

Personalised recommendations