Advertisement

Aircraft Emissions at Cruise and Plume Processes

  • Christiane Voigt
  • Tina Jurkat
  • Hans Schlager
  • Dominik Schäuble
  • Andreas Petzold
  • Ulrich Schumann
Chapter
Part of the Research Topics in Aerospace book series (RTA)

Abstract

The detection of aircraft emissions at cruise altitudes helps to understand and assess the effects of aviation on atmospheric composition and climate. Since the early 1990s, aircraft emissions of carbon dioxide, water vapor, nitrogen and sulfur oxides, aerosol and soot and their processing in the atmosphere as well as contrail formation have been measured in situ with the instrumented DLR research aircraft Falcon. Scientific results from a series of aircraft missions are summarized and explained, uncertainties are discussed and suggestions are made on how to move forward.

Keywords

Soot Particle Emission Index Exhaust Plume Tropopause Region Aircraft Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anderson, B.E., Cofer, W.R., Crawford, J., Gregory, G.L., Vay, S.A., Brunke, K.E., Kondo, Y., Koike, M., Schlager, H., Baughcum, S.L., et al.: An assessment of aircraft as a source of particles to the upper troposphere. Geophys. Res. Lett. 26, 3069–3072 (1998). doi: 10.1029/1999GL900276 ADSCrossRefGoogle Scholar
  2. Arnold, F., Scheid, J., Stilp, T., Schlager, H., Reinhardt, M.E.: Measurements of jet aircraft emissions at cruise altitude. 1. The odd-nitrogen gases NO, NO2, HNO2, and HNO3. Geophys. Res. Lett. 19, 2421–2424 (1992)ADSCrossRefGoogle Scholar
  3. Brasseur, G.P., Müller, J.-F., Granier, C.: Atmospheric impact of NOx emissions by subsonic aircraft: A three-dimensional model study. J. Geophys. Res. 101, 1423–1428 (1996). doi: 10.1029/95JD02363 ADSCrossRefGoogle Scholar
  4. Brock, C.A., Schröder, F., Kärcher, B., Petzold, A., Busen, R., Fiebig, M.: Ultrafine particle size distributions measured in aircraft exhaust plumes. J. Geophys. Res. 105, 26555–26567 (2000)ADSCrossRefGoogle Scholar
  5. Brunner, D., Staehelin, J., Jeker, D., Wernli, H., Schumann, U.: Nitrogen oxides and ozone in the tropopause region of the northern hemisphere: measurements from commercial aircraft in 1995/1996 and 1997. J. Geophys. Res. 106, 27673–27700 (2001). doi: 10.1029/2001JD900239 ADSCrossRefGoogle Scholar
  6. Crutzen, P.J.: The influence of nitrogen oxides on the atmospheric ozone content. Q. J. R. Meteorol. Soc. 96, 320–325 (1970)ADSCrossRefGoogle Scholar
  7. Crutzen, P.J.: The role of NO and NO2 in the chemistry of the troposphere and stratosphere. Ann. Rev. Earth and Planetary Sci. 7, 443–472 (1979)ADSCrossRefGoogle Scholar
  8. Curtius, J.,Arnold, F., Schulte, P.: Sulfuric acid measurements in the exhaust plume of a jet aircraft in flight: implications for the sulfuric acid formation efficiency. Geophys. Res. Lett. 29, 17.11–17.14, (2002) doi: 10.1029/2001GL013813
  9. Fahey, D.W., Keim, E.R., Boering, K.A., Brock, C.A., Wilson, J.C., Jonsson, H.H., Anthony, S., Hanisco, T.F., Wennberg, P.O., Miake-Lye, R.C., et al.: Emission measurements of the Concorde supersonic aircraft in the lower stratosphere. Science 270, 70–74 (1995)ADSCrossRefGoogle Scholar
  10. Febvre, G., Gayet, J.F., Minikin, A., Schlager, H., Shcherbakov, V., Jourdan, O., Busen, R., Fiebig, M., Kärcher, B., Schumann, U.: On optical and microphysical characteristics of contrails and cirrus. J. Geophys. Res. 114, D02204 (2009). doi: 10.1029/2008JD010184 ADSCrossRefGoogle Scholar
  11. Grewe, V., Dameris, M., Fichter, C., Sausen, R.: Impact of aircraft NOx emissions. Part 1: interactively coupled climate-chemistry simulations and sensitivities to climate-chemistry feedback, lightning and model resolution. Meteorol. Z. 11, 177–186 (2002)CrossRefGoogle Scholar
  12. Hendricks, J., Kärcher, B., Lohmann, U.: Effects of ice nuclei on cirrus clouds in a global climate model. J. Geophys. Res. 116, D18206 (2011). doi: 10.1029/2010JD015302 ADSCrossRefGoogle Scholar
  13. Hoor, P., Borken-Kleefeld, J., Caro, D., Dessens, O., Endresen, O., Gauss, M., Grewe, V., Hauglustaine, D., Isaksen, I.S.A., Jöckel, P., et al.: The impact of traffic emissions on atmospheric ozone and OH: results from QUANTIFY. Atmos. Chem. Phys. 9, 3113–3136 (2009). doi: 10.5194/acp-9-3113-2009 ADSCrossRefGoogle Scholar
  14. IPCC: Aviation and the Global Atmosphere, p. 373. Cambridge Univ Press, Cambridge (1999)Google Scholar
  15. Jayne, J.T., Pöschl, U., Chen, Y., Dai, D., Molina, L.T., Worsnop, D.R., Kolb, C.E., Molina, M.J.: Pressure and temperature dependence of the gas-phase reaction of SO3 with H2O and the heterogeneous reaction of SO3 with H2O/H2SO4 surfaces. J. Phys. Chem. A 101, 10000–10011 (1997). doi: 10.1021/jp972549z CrossRefGoogle Scholar
  16. Johnston, H.S.: Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust. Science 173, 517–522 (1971)ADSCrossRefGoogle Scholar
  17. Jurkat, T., Voigt, C., Arnold, F., Schlager, H., Kleffmann, J., Aufmhoff, H., Schäuble, D., Schaefer, M., Schumann, U.: Measurements of HONO, NO, NOy and SO2 in aircraft exhaust plumes at cruise. Geophys. Res. Lett. 38, L10807 (2011). doi: 10.1029/2011GL046884 ADSCrossRefGoogle Scholar
  18. Kärcher, B., Hirschberg, M.M., Fabian, P.: Small-scale chemical evolution of aircraft exhaust species at cruising altitudes. J. Geophys. Res. 101, 15169–15190 (1996). doi: 10.1029/96JD01059 ADSCrossRefGoogle Scholar
  19. Kärcher, B.: Aviation-produced aerosols and contrails. Surv. Geophys. 20, 113–167 (1999)ADSCrossRefGoogle Scholar
  20. Kärcher, B., Voigt, C.: Formation of nitric acid/water ice particles in cirrus clouds. Geophys. Res. Lett. 33, L08806 (2006). doi: 10.1029/2006GL025927 CrossRefGoogle Scholar
  21. Kärcher, B., Yu, F.: Role of aircraft soot emissions in contrail formation. Geophys. Res. Lett. 36, L01804 (2009). doi: 10.1029/2008GL036649 CrossRefGoogle Scholar
  22. Knollenberg, R.G.: Measurements of the growth of the ice budget in a persisting contrail. J. Atmos. Sci. 29, 1367–1374 (1972)ADSCrossRefGoogle Scholar
  23. Koike, M., Kondo, Y., Ikeda, H., Gregory, G.L., Anderson, B.E., Sachse, G.W., Blake, D.R., Liu, S.C., Singh, H.B., Thompson, A.M., et al.: Impact of aircraft emissions on reactive nitrogen over the North Atlantic flight corridor region. J. Geophys. Res. 105, 3665–3677 (2000)ADSCrossRefGoogle Scholar
  24. Konopka, P.: Analytical gaussian solutions for anisotropic diffusion in a linear shear flow. J. Non-Equilib. Thermodyn. 20, 78–91 (1995)ADSzbMATHCrossRefGoogle Scholar
  25. Lee, D.S., Fahey, D.W., Forster, P.M., Newton, P.J., Wit, R.C.N., Lim, L.L., Owen, B., Sausen, R.: Aviation and global climate change in the 21st century. Atmos. Environ. 43, 3520–3537 (2009). doi: 10.1016/j.atmosenv.2009.04.024 CrossRefGoogle Scholar
  26. Lee, D.S., Pitari, G., Grewe, V., Gierens, K., Penner, J.E., Petzold, A., Prather, M.J., Schumann, U., Bais, A., Berntsen, T., et al.: Transport impacts on atmosphere and climate: aviation. Atmos. Env. 44, 4678–4734 (2010). doi: 10.1016/j.atmosenv.2009.06.005 CrossRefGoogle Scholar
  27. Misaka, T., Holzäpfel, F., Hennemann, I., Gerz, T., Manhart, M., Schwertfirm, F.: Vortex bursting and tracer transport of a counter-rotating vortex pair. Phys. Fluids 24, 025104 (2012). doi: 10.1063/1.3684990 ADSCrossRefGoogle Scholar
  28. Paoli, R., Cariolle, D., Sausen, R.: Review of effective emissions modeling and computation. Geosci. Model Dev. 4, 643–667 (2011). doi: 10.5194/gmd-4-643-2011 ADSCrossRefGoogle Scholar
  29. Petzold, A., Busen, R., Schröder, F.P., Baumann, R., Kuhn, M., Ström, J., Hagen, D.E., Whitefield, P.D., Baumgardner, D., Arnold, F., et al.: Near-field measurements on contrail properties from fuels with different sulfur content. J. Geophys. Res. 102, 29867–29880 (1997). doi: 10.1029/97JD02209 ADSCrossRefGoogle Scholar
  30. Petzold, A., Stein, C., Nyeki, S., Gysel, M., Weingartner, E., Baltensperger, U., Giebl, H., Hitzenberger, R., Döpelheuer, A., Vrchoticky, S., et al.: Properties of jet engine combustion particles during the part Emis experiment: microphysics and chemistry. Geophys. Res. Lett. 30(13), 1719 (2003). doi: 10.1029/2003GL017283 ADSCrossRefGoogle Scholar
  31. Petzold, A., Fiebig, M., Fritzsche, L., Stein, C., Schumann, U., Wilson, C.W., Hurley, C.D., Arnold, F., Ktragkou, E., Baltensperger, U., et al.: Particle emissions from aircraft engines—a survey of the European project partEmis. Meteorol. Z. 14, 465–476 (2005). doi: 10.1127/0941-2948/2005/0054 CrossRefGoogle Scholar
  32. Schäuble, D., Voigt, C., Kärcher, B., Stock, P., Schlager, H., Krämer, M., Schiller, C., Bauer, R., Spelten, N., de Reus, M., et al.: Airborne measurements of the nitric acid partitioning in persistent contrails. Atmos. Chem. Phys. 9, 8189–8197 (2009). doi: 10.5194/acp-9-8189-2009 ADSCrossRefGoogle Scholar
  33. Schlager, H., Konopka, P., Schulte, P., Schumann, U., Ziereis, H., Arnold, F., Klemm, M., Hagen, D.E., Whitefield, P.D., Ovarlez, J.: In situ observations of air traffic emission signatures in the North Atlantic flight corridor. J. Geophys. Res. 102, 10739–10750 (1997)ADSCrossRefGoogle Scholar
  34. Schlager, H., Schulte, P., Flatøy, F., Slemr, F., Velthoven, P.V., Ziereis, H., Schumann, U.: Regional nitric oxide enhancements in the North Atlantic flight corridor observed and modeled during POLINAT 2, a case study. Geophys. Res. Lett. 26, 3061–3064 (1999). doi: 10.1029/1999GL900349 ADSCrossRefGoogle Scholar
  35. Schröder, F., Brock, C.A., Baumann, R., Petzold, A., Busen, R., Schulte, P., Fiebig, M.: In situ studies on volatile jet exhaust particle emissions: impacts of fuel sulfur content and environmental conditions on nuclei mode aerosols. J. Geophys. Res. 105, 19941–19954 (2000a)ADSCrossRefGoogle Scholar
  36. Schröder, F.P., Kärcher, B., Duroure, C., Ström, J., Petzold, A., Gayet, J.-F., Strauss, B., Wendling, P., Borrmann, S.: The transition of contrails into cirrus clouds. J. Atmos. Sci. 57, 464–480 (2000b)ADSCrossRefGoogle Scholar
  37. Schumann, U., Ström, J., Busen, R., Baumann, R., Gierens, K., Krautstrunk, M., Schröder, F.P., Stingl, J.: In situ observations of particles in jet aircraft exhausts and contrails for different sulfur-containing fuels. J. Geophys. Res. 101, 6853–6870 (1996). doi: 10.1029/95JD03405 ADSCrossRefGoogle Scholar
  38. Schumann, U., Schlager, H., Arnold, F., Baumann, R., Haschberger, P., Klemm, O.: Dilution of aircraft exhaust plumes at cruise altitudes. Atmos. Environ. 32, 3097–3103 (1998)CrossRefGoogle Scholar
  39. Schumann, U., Schlager, H., Arnold, F., Ovarlez, J., Kelder, H., Hov, Ø., Hayman, G., Isaksen, I.S.A., Staehelin, J., Whitefield, P.D.: Pollution from aircraft emissions in the North Atlantic flight corridor: overview on the POLINAT projects. J. Geophys. Res. 105, 3605–3631 (2000). doi: 10.1029/1999JD900941 ADSCrossRefGoogle Scholar
  40. Schumann, U., Arnold, F., Busen, R., Curtius, J., Kärcher, B., Petzold, A., Schlager, H., Schröder, F., Wohlfrom, K.H.: Influence of fuel sulfur on the composition of aircraft exhaust plumes: the experiments SULFUR 1-7. J. Geophys. Res. 107, 4247 (2002). doi: 10.1029/2001JD000813 CrossRefGoogle Scholar
  41. Schumann, U.: A contrail cirrus prediction model. Geosci. Model Dev. Discuss. 4, 3185–3293 (2011). doi: 10.5194/gmdd-4-3185-2011 ADSCrossRefGoogle Scholar
  42. Sölch, I., Kärcher, B.: A large-eddy model for cirrus clouds with explicit aerosol and ice microphysics and lagrangian ice particle tracking. Q. J. R. Meteorol. Soc. 136B, 2074–2093 (2010). doi: 10.1002/qj.689 ADSCrossRefGoogle Scholar
  43. Starik, A.M., Savel’ev, A.M., Titova, N.S., Schumann, U.: Modeling of sulfur gases and chemiions in aircraft engines. Aerosp. Sci. Technol. 6, 63–81 (2002)CrossRefGoogle Scholar
  44. Starik, A.M., Savel’ev, A.M., Titiva, N.S., Loukhovitskaya, E.E., Schumann, U.: Effect of aerosol precursors from gas turbine engines on the volatile sulfate aerosols and ion clusters formation in aircraft plumes. Phys. Chem. Chem. Phys. 6, 3426–3436 (2004)CrossRefGoogle Scholar
  45. Stockwell, W.R., Calvert, J.G.: The mechanism of the HO-SO2 reaction. Atmos. Environ. 17, 2231–2235 (1983)CrossRefGoogle Scholar
  46. Tremmel, H.G., Schlager, H., Konopka, P., Schulte, P., Arnold, F., Klemm, M., Droste-Franke, B.: Observations and model calculations of jet aircraft exhaust products at cruise altitude and inferred initial OH emissions. J. Geophys. Res. 103, 10803–10816 (1998)ADSCrossRefGoogle Scholar
  47. Tremmel, H.G., Schumann, U.: Model simulations of fuel sulfur conversion efficiencies in an aircraft engine: dependence on reaction rate constants and initial species mixing ratios. Aerosp. Sci. Technol. 3, 417–430 (1999)CrossRefGoogle Scholar
  48. Unterstrasser, S., Gierens, K., Spichtinger, P.: The evolution of contrail microphysics in the vortex phase. Meteorol. Z. 17, 145–156 (2008). doi: 10.1127/0941-2948/2008/0273 CrossRefGoogle Scholar
  49. Voigt, C., Schlager, H., Ziereis, H., Kärcher, B., Luo, B.P., Schiller, C., Krämer, M., Popp, P.J., Irie, H., Kondo, Y.: Nitric acid in cirrus clouds. Geophys. Res. Lett. 33, L05803 (2006). doi: 10.1029/2005GL025159 CrossRefGoogle Scholar
  50. Voigt, C., Schumann, U., Jurkat, T., Schäuble, D., Schlager, H., Petzold, A., Gayet, J.-F., Krämer, M., Schneider, J., Borrmann, S., et al.: In situ observations of young contrails—overview and selected results from the CONCERT campaign. Atmos. Chem. Phys. 10, 9039–9056 (2010). doi: 10.5194/acp-10-9039-2010 ADSCrossRefGoogle Scholar
  51. Voigt, C., Schumann, U., Jessberger, P., Jurkat, T., Petzold, A., Gayet, J.-F., Krämer, M., Thornberry, T., Fahey, D.W.: Extinction and optical depth of contrails. Geophys. Res. Lett. 38, L11806 (2011). doi: 10.1029/2011GL047189 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christiane Voigt
    • 1
  • Tina Jurkat
    • 1
  • Hans Schlager
    • 1
  • Dominik Schäuble
    • 1
  • Andreas Petzold
    • 1
  • Ulrich Schumann
    • 1
  1. 1.DLR, Institute of Atmospheric Physics (IPA)OberpfaffenhofenGermany

Personalised recommendations