Evaluating Climate-Chemistry Response and Mitigation Options with AirClim

  • Volker Grewe
  • Katrin Dahlmann
Part of the Research Topics in Aerospace book series (RTA)


The evaluation of climate change mitigation options addresses the whole air traffic system. Any optimization with respect to climate change requires a representation of this system and hence a simplification of the individual components and models. AirClim is such a model for simplified evaluation of the approximate chemistry-climate impact of air traffic emissions. The model represents the major responses of the atmosphere to emissions in terms of composition and climate change. The model is used to evaluate both the mean response and the uncertainty range of the climate impact of any change in the air traffic system. The uncertainty range is derived by a Monte-Carlo simulation using random variations of uncertain model input parameters. This uncertainty range is found to be much smaller than the uncertainties in knowledge of the air traffic climate impact in general.


Emission Scenario Climate Impact Radiative Force Emission Inventory Mitigation Option 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Dahlmann, K.: Eine Methode zur effizienten Bewertung von Maßnahmen zur Klimaoptimierung des Luftverkehrs. Ph.D., Ludwig-Maximilians-Universität, Munich (2011)Google Scholar
  2. Fichter, C.: Climate impact of air traffic emissions in dependency of the emission location. PhD thesis, Manchester Metropolitan University (2009)Google Scholar
  3. Fuglestvedt, J.S., Shine, K.P., Berntsen, T., Cook, J., Lee, D.S., Stenke, A., Skeie, R.B., Velders, G.J.M., Waitz, I.A.: Transport impacts on atmosphere and climate: metrics. Atmos. Environ. 44, 4648–4677 (2010). doi: 10.1016/j.atmosenv.2009.04.044 ADSCrossRefGoogle Scholar
  4. Grewe, V., Stenke, A.: AirClim: an efficient climate impact assessment tool. Atmos. Chem. Phys. 8, 4621–4639 (2008)ADSCrossRefGoogle Scholar
  5. Grewe, V., Plohr, M., Cerino, G., Di Muzio, M., Deremaux, Y., Galerneau, M., de Saint Martin, P., Chaika, T., Hasselrot, A., Tengzelius, U., et al.: Estimates of the climate impact of future small-scale supersonic transport aircraft−Results from the HISAC EU-project. Aeron. J. 114, 199–206 (2010)Google Scholar
  6. Hasselmann, K., Hasselmann, S., Giering, R., Ocana, V., Storch, H.V.: Sensitivity study of optimal CO2 emission paths using a simplified structural integrated assessment model (SIAM). Clim. Change 37, 345–386 (1997). doi: 10.1023/A:1005339625015 CrossRefGoogle Scholar
  7. Köhler, M. O., Rädel, G., Dessens, O., Shine, K. P., Rogers, H. L., Wild, O., Pyle, J. A.: Impact of perturbations to nitrogen oxide emissions from global aviation. J. Geophys. Res. 113, D11305 (2008). doi: 10.1029/2007JD009140
  8. Lee, D.S., Fahey, D.W., Forster, P.M., Newton, P.J., Wit, R.C.N., Lim, L.L., Owen, B., Sausen, R.: Aviation and global climate change in the 21st century. Atmos. Environ. 43, 3520–3537, (2009)Google Scholar
  9. Lee, D.S., Pitari, G., Grewe, V., Gierens, K., Penner, J.E., Petzold, A., Prather, M.J., Schumann, U., Bais, A., Berntsen, T., et al.: Transport impacts on atmosphere and climate: Aviation. Atmos. Environ. 44, 4678–4734 (2010)ADSCrossRefGoogle Scholar
  10. Ponater, M., Pechtl, S., Sausen, R., Schumann, U., Hüttig, G.: Potential of the cryoplane technology to reduce aircraft climate impact: a state-of the-art assessment. Atmos. Environ. 6928–6944 (2006). doi: 10.1016/j.atmosenv.2006.06.036
  11. Sausen, R., Schumann, U.: Estimates of the climate response to aircraft CO2 and NOx emission scenarios. Clim. Change 44(1–2), 27–58 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.DLRInstitute of Atmospheric Physics (IPA)OberpfaffenhofenGermany

Personalised recommendations