Tunable Light Sources for Lidar Applications

  • Andreas Fix
Part of the Research Topics in Aerospace book series (RTA)


Differential absorption lidar measurements require coherent radiation with high peak and average power in the nanosecond time regime at wavelengths coincident with specific absorption features of the atmospheric trace species to be measured. Often these wavelengths do not coincide with readily available laser lines. Optical parametric oscillators and amplifiers can efficiently convert light from fixed frequency sources into broadly tunable laser radiation providing a generic approach to developing versatile lidar transmitters. This technology has been advanced at DLR to a stage of maturity suitable for airborne and spaceborne applications.


Optical Parametric Oscillator Pulse Repetition Frequency Periodically Pole Lithium Niobate Single Longitudinal Mode Injection Seeding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amediek, A., Fix, A., Wirth, M., Ehret, G.: Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide. Appl. Phys. B 92, 295–302 (2008). doi: 10.1007/s00340-008-3075-6 ADSCrossRefGoogle Scholar
  2. Amediek, A., Fix, A., Ehret, G., Caron, J., Durand, Y.: Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2. Atmos. Meas. Tech. 2, 755–772 (2009). doi: 10.5194/amt-2-755-2009 CrossRefGoogle Scholar
  3. Armstrong, J.A., Bloembergen, N., Ducuing, J., Pershan, P.S.: Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962). doi: 10.1103/PhysRev.127.1918 ADSCrossRefGoogle Scholar
  4. Baumgartner, R.A., Byer, R.L.: Continuously tunable ir lidar with applications to remote measurements of SO2 and CH4. Appl. Opt. 17, 3555–3561 (1978). doi: 10.1364/AO.17.003555 ADSCrossRefGoogle Scholar
  5. Bjorkholm, J.E., Danielmeyer, H.G.: Frequency control of a pulsed parametric oscillator by radiation injection. Appl. Phys. Lett. 15, 171–173 (1969). doi: 10.1063/1.1652954 ADSCrossRefGoogle Scholar
  6. Brassington, D.J.: Differential absorption lidar measurements of atmospheric water vapor using an optical parametric oscillator source. Appl. Opt. 21, 4411–4416 (1982). doi: 10.1364/AO.21.004411 ADSCrossRefGoogle Scholar
  7. Brin, D.: Sundiver. Bantam Book, New York (1980)Google Scholar
  8. Ebrahim-Zadeh, M., Dunn, M.H.: Optical parametric oscillators. In Bass, M., Enoch, J.M., Van Stryland, E.W., Wolfe, W. L. (eds.) OSA Handbook of Optics, vol. 4, pp. 22.21–22.72. McGraw-Hill, New York (2004)Google Scholar
  9. Endemann, M., Byer, R.L.: Simultaneous remote measurements of atmospheric temperature and humidity using a continuously tunable IR lidar. Appl. Opt. 20, 3211–3217 (1981). doi: 10.1364/AO.20.003211 ADSCrossRefGoogle Scholar
  10. Fix, A., Wallenstein, R.: Spectral properties of pulsed nanosecond optical parametric oscillators: experimental investigation and numerical analysis. J. Opt. Soc. Am. B13, 2484–2497 (1996). doi: 10.1364/JOSAB.13.002484 ADSGoogle Scholar
  11. Fix, A., Ehret, G.: Intracavity frequency mixing in pulsed optical parametric oscillators for the efficient generation of continuously tunable ultraviolet radiation. Appl. Phys. B 67, 331–338 (1998). doi: 10.1007/s003400050512 ADSCrossRefGoogle Scholar
  12. Fix, A., Wirth, M., Meister, A., Ehret, G., Pesch, M., Weidauer, D.: Tunable ultraviolet optical parametric oscillator for differential absorption lidar measurements of tropospheric ozone. Appl. Phys. B 75, 153–163 (2002). doi: 10.1007/s00340-002-0964-y ADSCrossRefGoogle Scholar
  13. Fix, A., Büdenbender, C., Wirth, M., Quatrevalet, M., Amediek, A., Kiemle, C., Ehret, G.: Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4. Proc. SPIE 8182, 818206 (2011). doi: 10.1117/12.898412 CrossRefGoogle Scholar
  14. Giordmaine, J.A., Miller, R.C.: Tunable coherent parametric oscillations in LiNbO3 at optical frequencies. Phys. Rev. Lett. 14, 973–976 (1965). doi: 10.1103/PhysRevLett.14.973 ADSCrossRefGoogle Scholar
  15. Mahnke, P., Wirth, M.: Real-time quantitative measurement of the mode beating of an injection-seeded optical parametric oscillator. Appl. Phys. B 99, 141–148 (2010). doi: 10.1007/s00340-010-3923-z ADSCrossRefGoogle Scholar
  16. Milton, M.J.T., Gardiner, T.D., Molero, F., Galech, J.: Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane. Opt. Commun. 142, 153–160 (1997). doi: 10.1016/S0030-4018(97),00260-5 ADSCrossRefGoogle Scholar
  17. Nikogosyan, D.N.: Nonlinear optical crystals: a complete survey. Springer, New York (2005)Google Scholar
  18. Orr, B.J., He, Y., White, R.T.: Spectroscopic applications of tunable optical parametric oscillators. In: Duarte 2nd, F. (ed.) Tunable Laser Applications. CRC, New York (2009)Google Scholar
  19. Peuser, P., Platz, W., Fix, A., Ehret, G., Meister, A., Haag, M., Zolichowski, P.: Compact, passively Q-switched, all-solid-state master oscillator-power amplifier-optical parametric oscillator (MOPA-OPO) system pumped by a fiber-coupled diode laser generating high-brightness, tunable, ultraviolet radiation. Appl. Opt. 48, 3839–3845 (2009). doi: 10.1364/AO.48.003839 ADSCrossRefGoogle Scholar
  20. Poberaj, G., Fix, A., Assion, A., Wirth, M., Kiemle, C., Ehret, G.: Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy. Appl. Phys. B 75, 165–172 (2002). doi: 10.1007/s00340-002-0965-x ADSCrossRefGoogle Scholar
  21. Saikawa, J., Miyazaki, M., Fujii, M., Ishizuki, H., Taira, T.: High-energy, broadly tunable, narrow-bandwidth mid-infrared optical parametric system pumped by quasi-phase-matched devices. Opt. Lett. 33, 1699–1701 (2008). doi: 10.1364/OL.33.001699 ADSCrossRefGoogle Scholar
  22. Saleh, B.E.A. Teich, M.C.: Fundamentals of Photonics. Wiley, New York (2007)Google Scholar
  23. Wirth, M., Fix, A., Mahnke, P., Schwarzer, H., Schrandt, F., Ehret, G.: The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance. Appl. Phys. B 96, 201–213 (2009). doi: 10.1007/s00340-009-3365-7 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andreas Fix
    • 1
  1. 1.DLR, Institute of Atmospheric Physics (IPA)OberpfaffenhofenGermany

Personalised recommendations