Lidar for Aerosol Remote Sensing

  • Matthias Wiegner
Part of the Research Topics in Aerospace book series (RTA)


Measurements of aerosols are urgently required for understanding and modeling their role in the climate system and for investigating interactions between aerosols, clouds and radiation. Lidar (light detection and ranging) is an active remote sensing method for aerosol analysis which provides range resolved information. In this paper the different aerosol properties—geometrical, optical and microphysical—that can be derived from lidars are briefly described. In particular, the role of the so-called lidar ratio is discussed.


Lidar Measurement Stratospheric Aerosol Nonspherical Particle Depolarization Ratio Microphysical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ansmann, A., Wandinger, U., Riebesell, M., Weitkamp, C., Michaelis, W.: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined raman elastic-backscatter lidar. Appl. Opt. 31(33), 7113–7131 (1992)Google Scholar
  2. Bösenberg, J., V. Matthias, A., Amodeo, V., Amoiridis, A., Ansmann, J., Baldasano, M., Balin, I., Balis, D., Böckmann, C., Boselli, A., Carlsson, G., Chaikovsky, A., Chourdakis, G., Comeron, A., De Tomasi, F., Eixmann, R., Freudenthaler, V., Giehl, H., Grigorov, I., Hagard, A., Iarlori, M., Kirsche, A., Kolarov, G., Komguem, L., Kreipl, S., Kumpf, W., Larcheveque, G., Linné, H., Matthey, R., Mattis, I., Mekler, A., Mironova, I., Mitev, V., Mona, L., Müller, D., Music, S., Nickovic, S., Pandolfi, M., Papayannis, A., Pappalardo, G., Pelon, J., Perez, C., Perrone, R.M., Persson, R., Resendes, D.P., Rizi, V., Rocadenbosch, F., Rodrigues, J.A., Sauvage, L., Schneidenbach, L., Schumacher, R., Shcherbakov, V., Simeonov, V., Sobolewski, P., Spinelli, N., Stachlewska, I., Stoyanov, D., Trickl, T., Tsaknakis, G., Vaughan, G., Wandinger, U., Wang, X., Wiegner, M., Zavrtanik, M., Zerefos, C.: EARLINET: A European Aerosol Research Lidar Network to Establish an Aerosol Climatology. MPI-Report 348, Max-Planck-Institut für Meteorologie, Hamburg, Germany, p. 192, ISSN 0937-1060 (2003)Google Scholar
  3. Fernald, F.G.: Analysis of atmospheric lidar observations: some comments. Appl. Opt. 23(5), 652–653 (1984)ADSCrossRefGoogle Scholar
  4. Freudenthaler, V., Esselborn, M., Wiegner, M., Heese, B., Tesche, M., Ansmann, A., Müller, D., Althausen, D., Wirth, M., Fix, A., Ehret, G., Knippertz, P., Toledano, C., Gasteiger, J., Garhammer, M., Seefeldner, M.: Depolarization-ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus B 61, 165–179 (2009). doi: 10.1111/j.1600-0889.2008.00396.x. ADSCrossRefGoogle Scholar
  5. Gasteiger, J., Groß, S., Freudenthaler, V., Wiegner, M.: Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements. Atmos. Chem. Phys. 11(5), 2209–2223 (2011). doi: 10.5194/acp-11-2209-2011 ADSCrossRefGoogle Scholar
  6. Groß, S., Freudenthaler, V., Wiegner, M., Gasteiger, J., Geiß, A., Schnell, F.: Dual-wavelength linear depolarization ratio of volcanic aerosols: lidar measurements of the Eyjafjallajökull plume over Maisach, Germany. Atmos. Environ. 48, 85–96 (2011). doi: 10.1016/j.atmosenv.2011.06.017 ADSCrossRefGoogle Scholar
  7. Jäger, H.: Long-term record of lidar observations of the stratospheric aerosol layer at Garmisch-Partenkirchen. J. Geophys. Res. 110, D08106 (2005). doi: 10.1029/2004JD005506 ADSCrossRefGoogle Scholar
  8. Klett, J.D.: Stable analytical inversion solution for processing lidar returns. Appl. Opt. 20, 211–220 (1981)ADSCrossRefGoogle Scholar
  9. Mörl, P., Reinhardt, M.E., Renger, W., Schellhase, R.: The use of the airborne lidar ALEX-F for aerosol tracing in the lower troposphere. Contr. Atmos. Phys. 45, 403–410 (1981)Google Scholar
  10. Müller, D., Wandinger, U., Althausen, D., Fiebig, M.: Comprehensive particle characterization from three-wavelength Raman-lidar observations: case study. Appl. Opt. 40(27), 4863–4869 (2001)ADSCrossRefGoogle Scholar
  11. Wiegner, M., Gasteiger, J., Groß, S., Schnell, F., Freudenthaler, V., Forkel, R.: Characterization of the Eyjafjallajökull ash-plume: potential of lidar remote sensing. Phys. Chem. Earth (2011). doi: 10.1016/j.pce.2011.01.006

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Ludwig-Maximilians-Universität München (LMU), Meteorological Institute Munich (MIM)MünchenGermany

Personalised recommendations