Ice Cloud Properties From Space

  • Luca Bugliaro
  • Hermann Mannstein
  • Stephan Kox
Part of the Research Topics in Aerospace book series (RTA)


The Spinning Enhanced Visible and InfraRed Imager SEVIRI radiometer aboard the geostationary Meteosat Second Generation MSG satellite enables the quantitative identification and characterization of clouds from space with high temporal resolution. In this chapter we illustrate basic features of this satellite instrument and present some recent advances related to the detection of ice clouds and the determination of their optical and microphysical properties at IPA.


Brightness Temperature Optical Thickness Solar Zenith Angle High Cloud Cirrus Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baum, B., Heymsfield, A., Yang, P., et al.: Bulk scattering models for the remote sensing of ice clouds. Part 1: Microphysical data and models. J. Appl. Meteorol. 44, 1885–1895 (2005a). doi: 10.1175/JAM2308.1
  2. Baum, B., Yang, P., Heymsfield, A., et al: Bulk scattering models for the remote sensing of ice clouds. Part 2: Narrowband models. J. Appl. Meteorol. 44, 1896–1911 (2005b). doi: 10.1175/JAM2309.1
  3. Bugliaro, L., Zinner, T., Keil, C. et al.: Validation of cloud property retrievals with simulated satellite radiances: a case study for SEVIRI. Atmos. Chem. Phys. 11(12), 5603–5624 (2011). doi: 10.5194/acp-11-5603-2011 ADSCrossRefGoogle Scholar
  4. Bugliaro, L., Ostler, A. Wirth, M., et al.: Validation of cirrus optical thickness derived from SEVIRI with an airborne high spectral resolution lidar. Atmos. Meas. Tech. (2012, in preparation)Google Scholar
  5. Ewald, F., Bugliaro, L., Mannstein, H., et al.: Improved cirrus detection for SEVIRI and validation with MODIS. Atmos. Meas. Tech. (2012) (submitted)Google Scholar
  6. Kox, S., Mannstein, M., Bugliaro, L., et al.: A novel neural network approach for the retrieval of cirrus clouds from SEVIRI exploiting CALIOP. Atmos. Meas. Tech. (2012, in preparation)Google Scholar
  7. Krebs, W., Mannstein, H., Bugliaro, L. et al.: Technical note: a new day- and night-time meteosat second generation cirrus detection algorithm MeCiDA. Atmos. Chem. Phys. 7(24), 6145–6159 (2007). doi: 10.5194/acp-7-6145-2007 ADSCrossRefGoogle Scholar
  8. Kriebel, K.-T., Gesell, G., Kästner, M. et al.: The cloud analysis tool APOLLO: improvements and validation. Int. J. Remote Sens. 24(12), 2389–2408 (2003). doi: 10.1080/01431160210163065 ADSCrossRefGoogle Scholar
  9. Mayer, B., Kylling, A.: Technical note: the libRadtran software package for radiative transfer calculations: description and examples of use. Atmos. Chem. Phys. 5, 1855–1877 (2005). doi: 10.5194/acp-5-1855-2005 ADSCrossRefGoogle Scholar
  10. Nakajima, T., King, M. Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci. 47, 1878–1893 (1990). doi: 10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2
  11. Schmetz, J., Pili, P. Tjemkes, S., et al.: An introduction to Meteosat Second Generation (MSG). Bull. Am. Meteorol. Soc. 83(7), 977–992 (2002). doi: 10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2
  12. Winker, D.M., Vaughan, M.A., Omar, A. et al.: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 26, 2310–2323 (2009). doi: 10.1175/2009JTECHA1281.1 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.DLR, Institute of Atmospheric Physics (IPA)OberpfaffenhofenGermany

Personalised recommendations