Chemical Ionization Mass Spectrometric Measurements of Atmospheric Trace Gases

  • Heinfried Aufmhoff
  • Dominik Schäuble
  • Anke Roiger
  • Frank Arnold
  • Tina Jurkat
  • Christiane Voigt
  • Hans Schlager
Chapter
Part of the Research Topics in Aerospace book series (RTA)

Abstract

Chemical Ionization Mass Spectrometry (CIMS) is a versatile, fast and sensitive method for the detection of atmospheric trace gases, which play key roles in atmospheric chemistry and climate. A combination of different types of mass spectrometers, ion sources and inlet configurations are deployed by IPA. Sophisticated calibration techniques and in-flight calibration systems are developed to ensure high data quality. The CIMS instruments are employed preferably on research aircraft; in addition, observations are performed on ships, ground based sites and in laboratory scenarios including atmospheric chambers.

Keywords

Calibration Source Chemical Ionization Mass Spectrometry Quadrupole Mass Filter Reaction Rate Coefficient Research Aircraft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arnold, F., Scheid, J., Stilp, T., Schlager, H., Reinhardt, M.E.: Measurements of jet aircraft emissions at cruise altitude I: the odd-nitrogen gases NO, NO2, HNO2 and HNO3. Geophys. Res. Lett. 12, 2421–2424 (1992). doi: 10.1029/92GL02926 ADSCrossRefGoogle Scholar
  2. Arnold, F., Schneider, J., Gollinger, K., Schlager, H., Schulte, P., Hagen, D.E., Whitefield, P.D., van Velthofen, P.: Observation of upper tropospheric sulfur dioxide- and acetone-pollution: potential implications for hydroxy radical and aerosol formation. Geophys. Res. Lett. 24, 1 (1997). doi: 10.1029/96GL03693 CrossRefGoogle Scholar
  3. Aufmhoff, H., Hanke, M., Uecker, J., Schlager, H., Arnold, F.: An ion trap CIMS instrument for combined measurements of atmospheric OH and H2SO4: First test measurements above and inside the planetary boundary layer. Int. J. Mass Spectrom. 308, 26–34 (2011). doi: 10.1016/j.ijms.2011.07.016 CrossRefGoogle Scholar
  4. Curtius, J., Sierau, B., Arnold, F., Baumann, R., Busen, R., Schulte, P., Schumann, U.: First direct sulfuric acid detection in the exhaust plume of a jet aircraft in flight. Geophys. Res. Lett. 25, 923–926 (1998). doi: 10.1029/98GL00512 ADSCrossRefGoogle Scholar
  5. Curtius, J., Arnold, F., Schulte, P.: Sulfuric acid measurements in the exhaust plume of a jet aircraft in flight: implications for the sulfuric acid formation efficiency. Geophys. Res. Lett. 29, 1113 (2002). doi: 10.1029/2001GL013813 ADSCrossRefGoogle Scholar
  6. Fiedler, V., Nau, R., Ludmann, S., Arnold, F., Schlager, H., Stohl, A.: East Asian SO2 pollution plume over Europe—Part 1: airborne trace gas measurements and source identification by particle dispersion model simulations. Atmos. Chem. Phys. 9, 4717–4728 (2009). doi: 10.5194/acp-9-4717-2009 ADSCrossRefGoogle Scholar
  7. Huey, L.G., Dunlea, E.J., Lovejoy, E.R., Hanson, D.R., Norton, R.B., Fehsenfeld, F.C., Howard, C.J.: Fast time response measurements of HNO3 in air with a chemical ionization mass spectrometer. J. Geophys. Res. 103(D3), 3355–3360 (1998). doi: 10.1029/97JD02214 ADSCrossRefGoogle Scholar
  8. Jurkat, T., Voigt, C., Arnold, F., Schlager, H., Aufmhoff, H., Schmale, J., Schneider, J., Lichtenstern, M., Dörnbrack, A.: Airborne stratospheric ITCIMS measurements of SO2, HCl, and HNO3 in the aged plume of volcano Kasatochi. J. Geophys. Res. 115, D00L17 (2010). doi: 10.1029/2010JD013890 ADSCrossRefGoogle Scholar
  9. Jurkat, T., Voigt, C., Arnold, F., Schlager, H., Kleffmann, J., Aufmhoff, H., Schäuble, D., Schaefer, M., Schumann, U.: Measurements of HONO, NO, NOy and SO2 in aircraft exhaust plumes at cruise. Geophys. Res. Lett. 38(L10807), 1–5 (2011). doi: 10.1029/2011GL046884 Google Scholar
  10. Kiendler, A., Arnold, F.: Detection of gaseous oxygenated hydrocarbons in upper tropospheric and lower stratospheric aircraft borne experiments. Int. J. Mass Spectrum. 223, 733–741 (2003). doi: 10.1016/S1387-3806(02)00969-7 CrossRefGoogle Scholar
  11. Kleffmann, J., Lörzer, J., Wiesen, P., Kern, C., Trick, S., Volkamer, R., Rodenas, M., Wirtz, K.: Intercomparison of the DOAS and LOPAP techniques for the detection of nitrous acid (HONO). Atmos. Environ. 40, 3640–3652 (2006). doi: 10.1016/j.atmosenv.2006.03.027 CrossRefGoogle Scholar
  12. Marcy, T.P., Gao, R.S., Northway, M.J., Popp, P.J., Stark, H., Fahey, D.W.: Using chemical ionization mass spectrometry for detection of HNO3, HCl, and ClONO2 in the atmosphere. Int. J. Mass Spectrom. 243, 63–70 (2005). doi: 10.1016/j.ijms.2004.11.012 ADSCrossRefGoogle Scholar
  13. Möhler, O., Arnold, F.: Gaseous sulfuric acid and sulfur dioxide measurements in the artic troposphere and lower stratosphere: implications for hydroxyl radical abundances. Geophys. Res. Lett. 19, 1763–1766 (1992). doi: 10.1029/92GL01807 ADSCrossRefGoogle Scholar
  14. Reiner, T., Hanke, M., Arnold, F., Ziereis, H., Schlager, H., Junkermann, W.: Aircraft-borne measurements of peroxy radicals by chemical conversion/ion molecule reaction mass spectrometry: calibration, diagnostics, and results. J. Geophys. Res. 104, 18647–18659 (1999). doi: 10.1029/1999JD900312 ADSCrossRefGoogle Scholar
  15. Roiger, A., Aufmhoff, H., Stock, P., Arnold, F., Schlager, H.: An aircraft-borne chemical ionization—ion trap mass spectrometer (CI-ITMS) for fast PAN and PPN measurements. Atmos. Meas. Tech. 4, 173–188 (2011). doi: 10.5194/amt-4-173-2011 CrossRefGoogle Scholar
  16. Rollins, A.W., Thornberry, T.D., Gao, R.-S., Hall, B.D., Fahey, D.W.: Catalytic oxidation of H2 on platinum: a robust method for generating low mixing ratio H2O standards. Atmos. Meas. Tech. 4, 2059–2064 (2011). doi: 10.5194/amt-4-2059-2011 CrossRefGoogle Scholar
  17. Schlager, H., Arnold, F., Aufmhoff, H., Baumann, R., Pirjola, L., Roiger, A., Sailer, T., Wirth, M., Schumann, U.: First detection of East-Asian anthropogenic SO2 lifted to the lower stratosphere by a warm conveyor belt: HALO-aircraft measurements above Germany. Geophys. Res. Lett. (2012) (submitted)Google Scholar
  18. Slusher, D.L., Huey, L.G., Tanner, D.J.: A thermal dissociation—chemical ionization mass spectrometry (TD-CIMS) technique for the simultaneous measurement of peroxyacyl nitrates and dinitrogen pentoxide. J. Geophys. Res. 109, D19315 (2004). doi: 10.1029/2004JD004670 ADSCrossRefGoogle Scholar
  19. Speidel, M., Nau, R., Arnold, F., Schlager, H., Stohl, A.: Sulfur dioxide measurements in the lower, middle and upper troposphere: Deployment of an aircraft-based chemical ionization mass spectrometer with permanent in-flight calibration. Atmos. Environ. 41, 2427–2437 (2007). doi: 10.1016/j.atmosenv.2006.07.047 CrossRefGoogle Scholar
  20. Voigt, C., et al.: In situ observations of young contrails—overview and selected case studies from the CONCERT campaign. Atmos. Chem. Phys. 10, 9039–9056 (2010). doi: 10.5194/acp-10-9039-2010 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Heinfried Aufmhoff
    • 1
  • Dominik Schäuble
    • 1
  • Anke Roiger
    • 1
  • Frank Arnold
    • 1
    • 2
  • Tina Jurkat
    • 1
  • Christiane Voigt
    • 1
  • Hans Schlager
    • 1
  1. 1.DLR, Institute of Atmospheric Physics (IPA)OberpfaffenhofenGermany
  2. 2.Max-Planck -Institute for Nuclear PhysicsHeidelbergGermany

Personalised recommendations