Measurements of Nitrogen Oxides and Related Trace Gases

Chapter
Part of the Research Topics in Aerospace book series (RTA)

Abstract

Reactive nitrogen species play a key role in the chemistry of the free troposphere and lowermost stratosphere. They have a decisive influence on reaction cycles and on ozone and hydrogen oxide radicals. Therefore, in situ measurements of nitrogen oxides (NO, NO2, NOy) and related trace gases (O3, CO, and CO2) are of special interest. The Institute of Atmospherics Physics has performed observations of these trace gases aboard different research aircraft for many years. In this chapter instrumental techniques used to measure these species are presented.

Keywords

Nitrogen Oxide Reactive Nitrogen Species Free Troposphere Chemiluminescence Signal Cirrus Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arnold, F., Scheid, J., Stilp, T., Schlager, H., Reinhardt, M.E.: Measurements of jet aircraft emissions at cruise altitude. I: The odd-nitrogen gases NO, NO2, HNO2 and HNO3. Geophys. Res. Lett. 19, 2421–2424 (1992)ADSCrossRefGoogle Scholar
  2. Bollinger, M.J., Sievers, R.E., Fahey, D.W., Fehsenfeld, F.C.: Conversion of nitrogen-dioxide, nitric-acid, and normal-propyl nitrate to nitric-oxide by gold-catalyzed reduction with carbon-monoxide. Anal. Chem. 55, 1980–1986 (1983)CrossRefGoogle Scholar
  3. Bradshaw, J., Davis, D., Grodzinsky, G., Smyth, S., Newell, R., Sandholm, S., Liu, S.: Observed distributions of nitrogen oxides in the remote free troposphere from the NASA global tropospheric experiment programs. Rev. Geophys. 38, 61–116 (2000)ADSCrossRefGoogle Scholar
  4. Brenninkmeijer, C.A.M., Crutzen, P., Boumard, F., Dauer, T., Dix, B., Ebinghaus, R., Filippi, D., Fischer, H., Franke, H., Friess, U., et al.: Civil aircraft for the regular investigation of the atmosphere based on an instrumented container: the new CARIBIC system. Atmos. Chem. Phys. 7, 4953–4976 (2007)ADSCrossRefGoogle Scholar
  5. Brough, N., Reeves, C.E., Penkett, S.A., Stewart, D.J., Dewey, K., Kent, J., Barjat, H., Monks, P.S., Ziereis, H., Stock, P., et al.: Intercomparison of aircraft instruments on board the C-130 and Falcon 20 over southern Germany during EXPORT 2000. Atmos. Chem. Phys. 3, 2127–2138 (2003)ADSCrossRefGoogle Scholar
  6. Drummond, J.W., Volz, A., Ehhalt, D.H.: An optimized chemi-luminescence detector for tropospheric No measurements. J. Atmos. Chem. 2, 287–306 (1985)CrossRefGoogle Scholar
  7. Emmons, L.K., Deeter, M.N., Gille, J.C., Edwards, D.P., Attie, J.L., Warner, J., Ziskin, D., Francis, G., Khattatov, B., Yudin, V., et al.: Validation of measurements of pollution in the troposphere (MOPITT) CO retrievals with aircraft in situ profiles. J. Geophys. Res. 109,   (2004). doi: 10.1029/2003jd004101 CrossRefGoogle Scholar
  8. Fahey, D.W., Eubank, C.S., Hubler, G., Fehsenfeld, F.C.: Evaluation of a catalytic reduction technique for the measurement of total reactive odd-nitrogen NOy in the atmosphere. J. Atmos. Chem. 3, 435–468 (1985)CrossRefGoogle Scholar
  9. Fontijn, A., Sabadell, A.J., Ronco, R.J.: Homogeneous chemiluminescent measurement of nitric oxide with ozone—implications for continuous selective monitoring of gaseous air pollutants. Anal. Chem. 42, 575 (1970)Google Scholar
  10. Gerbig, C., Kley, D., VolzThomas, A., Kent, J., Dewey, K., McKenna, D.S.: Fast response resonance fluorescence CO measurements aboard the C-130: instrument characterization and measurements made during North Atlantic Regional Experiment 1993. J. Geophys. Res. 101, 29229–29238 (1996)ADSCrossRefGoogle Scholar
  11. Heland, J., Schlager, H., Richter, A., Burrows, J.P.: First comparison of tropospheric NO2 column densities retrieved from GOME measurements and in situ aircraft profile measurements. Geophys. Res. Lett. 29,   (2002). doi: 10.1029/2002gl015528 CrossRefGoogle Scholar
  12. Höller, H., Finke, U., Huntrieser, H., Hagen, M., Feigl, C.: Lightning-produced NOx (LINOX): experimental design and case study results. J. Geophys. Res. 104, 13911–13922 (1999)ADSCrossRefGoogle Scholar
  13. Huntrieser, H., Schlager, H., Feigl, C., Höller, H.: Transport and production of NOx in electrified thunderstorms: survey of previous studies and new observations at midlatitudes. J. Geophys. Res. 103, 28247–28264 (1998)ADSCrossRefGoogle Scholar
  14. Huntrieser, H., Schlager, H., Roiger, A., Lichtenstern, M., Schumann, U., Kurz, C., Brunner, D., Schwierz, C., Richter, A., Stohl, A.: Lightning-produced NOx over Brazil during TROCCINOX: airborne measurements in tropical and subtropical thunderstorms and the importance of mesoscale convective systems. Atmos. Chem. Phys. 7, 2987–3013 (2007)ADSCrossRefGoogle Scholar
  15. Kley, D., Drummond, J.W., Mcfarland, M., Liu, S.C.: Tropospheric profiles of NOx. J. Geophys. Res.-Oceans Atmos. 86, 3153–3161 (1981)ADSCrossRefGoogle Scholar
  16. Neuman, J.A., Huey, L.G., Ryerson, T.B., Fahey, D.W.: Study of inlet materials for sampling atmospheric nitric acid. Environ. Sci. Technol. 33, 1133–1136 (1999)CrossRefGoogle Scholar
  17. Ridley, B.A., Grahek, F.E., Walega, J.G.: A small, high-sensitivity, medium-response ozone detector suitable for measurements from light aircraft. J. Atmos. Ocean. Technol. 9, 142–148 (1992)ADSCrossRefGoogle Scholar
  18. Schäuble, D., Voigt, C., Karcher, B., Stock, P., Schlager, H., Kramer, M., Schiller, C., Bauer, R., Spelten, N., de Reus, M., et al.: Airborne measurements of the nitric acid partitioning in persistent contrails. Atmos. Chem. Phys. 9, 8189–8197 (2009)ADSCrossRefGoogle Scholar
  19. Schlager, H., Konopka, P., Schulte, P., Schumann, U., Ziereis, H., Arnold, F., Klemm, M., Hagen, D.E., Whitefield, P.D., Ovarlez, J.: In situ observations of air traffic emission signatures in the North Atlantic flight corridor. J. Geophys. Res. 102, 10739–10750 (1997)ADSCrossRefGoogle Scholar
  20. Schlager, H., Schulte, P., Flatoy, F., Slemr, F., van Velthoven, P., Ziereis, H., Schumann, U.: Regional nitric oxide enhancements in the North Atlantic flight corridor observed and modeled during POLINAT 2—a case study. Geophys. Res. Lett. 26, 3061–3064 (1999)ADSCrossRefGoogle Scholar
  21. Schulte, P., Schlager, H.: In-flight measurements of cruise altitude nitric oxide emission indices of commercial jet aircraft. Geophys. Res. Lett. 23, 165–168 (1996)ADSCrossRefGoogle Scholar
  22. Schulte, P., Schlager, H., Ziereis, H., Schumann, U., Baughcum, S.L., Deidewig, F.: NOx emission indices of subsonic long-range jet aircraft at cruise altitude: in situ measurements and predictions. J. Geophys. Res. 102, 21431–21442 (1997)ADSCrossRefGoogle Scholar
  23. Schumann, U., Konopka, P., Baumann, R., Busen, R., Gerz, T., Schlager, H., Schulte, P., Volkert, H.: Estimate of diffusion parameters of aircraft exhaust plumes near the tropopause from nitric-oxide and turbulence measurements. J. Geophys. Res. 100, 14147–14162 (1995)ADSCrossRefGoogle Scholar
  24. Schumann, U., Schlager, H., Arnold, F., Ovarlez, J., Kelder, H., Hov, O., Hayman, G., Isaksen, I.S.A., Staehelin, J., Whitefield, P.D.: Pollution from aircraft emissions in the North Atlantic flight corridor: overview on the POLINAT projects. J. Geophys. Res. 105, 3605–3631 (2000)ADSCrossRefGoogle Scholar
  25. Schumann, U., Huntrieser, H.: The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys. 7, 3823–3907 (2007)ADSCrossRefGoogle Scholar
  26. Sovde, O.A., Hoyle, C.R., Myhre, G., Isaksen, I.S.A.: The HNO3 forming branch of the HO2 + NO reaction: pre-industrial-to-present trends in atmospheric species and radiative forcings. Atmos. Chem. Phys. 11, 8929–8943 (2011). doi: 10.5194/acp-11-8929-2011 ADSCrossRefGoogle Scholar
  27. Stedman, D.H., Stuhl, F., Daby, E.E., Niki, H.: Analysis of ozone and nitric-oxide by a chemiluminescent method in laboratory and atmospheric studies of photochemical smog. J. Air Pollut. Control Assoc. 22, 260 (1972)Google Scholar
  28. Weinheimer, A.J., Campos, T.L., Ridley, B.A.: The in-flight sensitivity of gold-tube NOy converters to HCN. Geophys. Res. Lett. 25, 3943–3946 (1998)ADSCrossRefGoogle Scholar
  29. Zahn, A., Brenninkmeijer, C.A.M., Crutzen, P.J., Parrish, D.D., Sueper, D., Heinrich, G., Gusten, H., Fischer, H., Hermann, M., Heintzenberg, J.: Electrical discharge source for tropospheric “ozone-rich transients”. J. Geophys. Res. 107,   (2002). doi: 10.1029/2002jd002345 Google Scholar
  30. Ziereis, H., Schlager, H., Schulte, P., Kohler, I., Marquardt, R., Feigl, C.: In situ measurements of the NOx distribution and variability over the eastern North Atlantic. J. Geophys. Res. 104, 16021–16032 (1999)ADSCrossRefGoogle Scholar
  31. Ziereis, H., Schlager, H., Schulte, P., van Velthoven, P.F.J., Slemr, F.: Distributions of NO, NOx, and NOy in the upper troposphere and lower stratosphere between 28° and 61°N during POLINAT 2. J. Geophys. Res. 105, 3653–3664 (2000)ADSCrossRefGoogle Scholar
  32. Ziereis, H., Minikin, A., Schlager, H., Gayet, J.F., Auriol, F., Stock, P., Baehr, J., Petzold, A., Schumann, U., Weinheimer, A., et al.: Uptake of reactive nitrogen on cirrus cloud particles during INCA. Geophys. Res. Lett. 31,   (2004). doi: 10.1029/2003gl018794 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.DLR, Institute of Atmospheric Physics (IPA)OberpfaffenhofenGermany

Personalised recommendations