Advertisement

A Framework for Automatic Construction of Reusable Adaptive Courses: The Case of ProPer SAT 2.0

  • Ioannis Kazanidis
  • Maya Satratzemi
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 17)

Abstract

This chapter puts forward a proposal for a framework that enables the automatic construction of adaptive and reusable courses. The case study of the implementation of an adaptive Learning Management System (LMS) and an authoring tool, named ProPer and ProPer Sharable Content Object Reference Model (SCORM) Authoring Tool (SAT) 2.0 are presented. ProPer delivers SCORM compliant courses and ProPer SAT 2.0 helps authors to construct SCORM courses quickly that can be automatically adapted to user learning style. Additionally, ProPer SAT 2.0 incorporates intelligent functionalities since it has the ability to propose that appropriate content be inserted into a course, according to the domain, difficulty level and user ranking of the proposed content. Evaluation results have shown that end-users find it easy and useful and intend using it in the future.

Keywords

Technology Acceptance Model Learn Management System Educational Content Authoring Tool Automatic Construction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ADL. SCORM, http://www.adlnet.gov/Technologies/scorm (accessed April 29, 2011)
  2. Ainsworth, S.E., Major, N., Grimshaw, S.K., Hayes, M., Underwood, J.D., Williams, B., Wood, D.J.: REDEEM: Simple intelligent tutoring systems from usable tools. In: Murray, T., Blessing, S., Ainsworth, S. (eds.) Authoring Tools for Advanced Technology Learning Environment, pp. 205–232. Kluwer Academic Publishers, The Netherlands (2003)Google Scholar
  3. Armani, J.: VIDET: A visual authoring tool for adaptive websites tailored to non-programmer teachers. Educational Technology & Society 8(3), 36–52 (2005)Google Scholar
  4. Bajraktarevic, N., Hall, W., Fullick, P.: Incorporating learning styles in hypermedia environment: Empirical evaluation. In: Proceedings of AH Workshop (2003)Google Scholar
  5. De Bra, P., Smits, D., Stash, N.: Creating and Delivering Adaptive Courses with AHA! In: Nejdl, W., Tochtermann, K. (eds.) EC-TEL 2006. LNCS, vol. 4227, pp. 21–33. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. Bradley, W.E.: Conceptual framework for the design and evaluation of online learning modules in professional training and academic education in business. The Business Review, Cambridge 18(1), 196–207 (2011)Google Scholar
  7. Brusilovsky, P.: Adaptive hypermedia. User Modeling and User Adapted Interaction 11(1/2), 87–110 (2001)zbMATHCrossRefGoogle Scholar
  8. Carro, R.M., Pulido, E., Rodríguez, P.: Dynamic generation of adaptive Internet-based courses. Journal of Network and Computer Applications 22, 249–257 (1999)CrossRefGoogle Scholar
  9. Carver, C.A., Howard, R.A., Lavelle, E.: Enhancing student learning by incorporating learning styles into adaptive hypermedia. In: Proceedings of ED-MEDIA, pp. 118–123 (1996)Google Scholar
  10. Dagger, D., Wade, V., Conlan, O.: A framework for developing adaptive personalized e-Learning. In: Nall, J., Robson, R. (eds.) Proceedings of E-LEARN, pp. 2579–2587 (2004)Google Scholar
  11. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly 13(3), 319–340 (1989)CrossRefGoogle Scholar
  12. Duval, E.: Standarized metadata for education: A status report. In: Montgomerie, C., Karmo, V. (eds.) Proceedings of ED-MEDIA, pp. 458–463 (2001)Google Scholar
  13. Felder, R.M., Silverman, L.K.: Learning styles and teaching styles in engineering education. Engineering Education 78(7), 674–681 (1988)Google Scholar
  14. Gardner, H.: Multiple intelligences: The theory in practice. Basic Books, New York (1993)Google Scholar
  15. Ghali, F., Cristea, A.I., Stewart, C.: My online teacher 2.0. In: Proceedings of Individual and Group Adaptation in Collaborative Learning Environments Workshop of ECTEL (2008)Google Scholar
  16. Honey, P., Mumford, A.: The manual of learning styles. Peter Honey Publications, Maidenhead (1992)Google Scholar
  17. Kazanidis, I., Satratzemi, M.: Adaptivity in a SCORM Compliant Adaptive Educational Hypermedia System. In: Leung, H., Li, F., Lau, R., Li, Q. (eds.) ICWL 2007. LNCS, vol. 4823, pp. 196–206. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. Kazanidis, I., Satratzemi, M.: Adaptivity in pro per: An adaptive SCORM compliant LMS. Journal of Distance Education Technologies 7(2), 44–62 (2009a)CrossRefGoogle Scholar
  19. Kazanidis, I., Satratzemi, M.: Applying learning styles to SCORM compliant courses. In: Aedo, I., Chen, N., Kinshuk, Sampson, D., Zaitseva, L. (eds.) Proceedings of IEEE-ICALT, pp. 147–151. IEEE Press, New York (2009b)Google Scholar
  20. Kazanidis, I., Satratzemi, M.: Efficient Authoring of SCORM Courseware Adapted to User Learning Style: The Case of ProPer SAT. In: Spaniol, M., Li, Q., Klamma, R., Lau, R.W.H. (eds.) ICWL 2009. LNCS, vol. 5686, pp. 196–205. Springer, Heidelberg (2009c)CrossRefGoogle Scholar
  21. Kelly, D., Tangney, B.: Adapting to intelligence profile in an adaptive educational system. Interacting with Computers 18, 385–409 (2006)CrossRefGoogle Scholar
  22. Kolb, D.: Experiential Learning: experience as the source of learning and development. Prentice-Hall, New Jersey (1984)Google Scholar
  23. Krull, G.E., Mallinson, B.J., Sewry, D.A.: Describing online learning content to facilitate resource discovery and sharing: The development of the RU LOM Core. Journal of Computer Assisted Learning 22(3), 172–181 (2006)CrossRefGoogle Scholar
  24. Papanikolaou, K.A., Grigoriadou, M., Magoulas, G.D., Kornilakis, H.: Towards new forms of knowledge communication: The adaptive dimension of a Web-based learning environment. Computers & Education 39, 333–360 (2002)CrossRefGoogle Scholar
  25. Peng, Y.: SCORM-based courseware design for the personalization of e-learning system. In: Proceedings of Intelligent Information Technology Application Workshop of IEEE Computer Society (2007)Google Scholar
  26. Popescu, E.: An Artificial Intelligence Course Used to Investigate Students’ Learning Style. In: Li, F., Zhao, J., Shih, T.K., Lau, R., Li, Q., McLeod, D. (eds.) ICWL 2008. LNCS, vol. 5145, pp. 122–131. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. Romero, C., Rider, J.J., Ventura, S., Hervas: AHA! meets SCORM. In: Proceedings of MCCSIS, pp. 95–98. IADIS Press, Lisbon (2005)Google Scholar
  28. Stash, N.: Incorporating cognitive/learning styles in a general-purpose adaptive hypermedia system. PhD dissertation, Eindhoven University of Technology (2007)Google Scholar
  29. Stash, N., Cristea, A., De Bra, P.: Authoring of learning styles in adaptive hypermedia: Problems and solutions. In: Proceedings of WWW Alt., pp. 114–123. ACM Press, New York (2004)CrossRefGoogle Scholar
  30. Tessmer, M.: Planning and conducting formative evaluations: Improving the quality of education and training. Kogan Page, London (1993)Google Scholar
  31. Triantafillou, E., Pomportsis, A., Demetriadis, S.: The design and the formative evaluation of an adaptive educational system based on cognitive styles. Computers & Education 41(1), 87–103 (2003)CrossRefGoogle Scholar
  32. Tseng, S.S., Su, J.M., Hwang, G.J., Hwang, G.H., Tsai, C.C., Tsai, C.J.: An object-oriented course framework for developing adaptive learning systems. Educational Technology & Society 11(2), 171–191 (2008)Google Scholar
  33. Witkin, H., Moore, C., Goodenough, D., Cox, P.: Field-dependent and field-independent cognitive styles and their educational implications. Review of Educational Research 47(1), 1–64 (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Kavala Institute of TechnologyKavalaGreece
  2. 2.University of MacedoniaThessalonnikiGreece

Personalised recommendations