Exploiting Learner Models Using Data Mining for E-Learning: A Rule Based Approach

  • Marianne Holzhüter
  • Dirk Frosch-Wilke
  • Ulrike Klein
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 17)

Abstract

The need for innovative didactical methods in combination with the efficient deployment of technical systems is an increasing challenge in the research field of e-learning. Research activities concerned with this observation have led to the understanding that the concept of learner models offers a range of possibilities to develop optimized, adaptive e-learning units (e.g. Graf et al. 2009, O’Connor 1998). Process information can enhance these approaches. Data mining is able to build process models from event logs. It means that information about real process execution can be deduced by extracting information from event logs rather than by assuming a behavior model which has been built by conventional modeling methods. This applies to the e-learning context, because a certain behavior of an underlying process model tracked in a Learning Management System (LMS) may differ from the one assumed by instructors or learning object designers of e-learning units. Instructors who need to attribute certain tasks to a huge group of online learners may not be capable of monitoring all factors influencing the appropriateness of all learner-task associations. Learning paths in LMS to which instructors have not paid attention to yet are of considerable interest. We apply a concept of rule based control of e-learning processes based on the framework we have presented in Holzhüter et al. 2010 to demonstrate these goals.

Keywords

Business Process Geographic Information System Process Mining Learning Style Learn Management System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdullah, N.A., Davis, H.: Is simple sequencing simple adaptive hypermedia? In: Proceedings of the ACM HC, pp. 172–173 (2003)Google Scholar
  2. Becker, J., Algermissen, L.: Prozessorientierte verwaltungsmodernisierung: Prozessmanagement im zeitalter von e-government und new public management. Springer, Berlin (2007)Google Scholar
  3. Bouckaert, R.R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A., Scuse, D.: WEKA manual for version 3-6-2. University of Waikato, Hamilton (2010), http://www.cs.waikato.ac.nz/ml/weka/ (accessed July 23, 2011)Google Scholar
  4. Bravo, J., Vialardi, C., Ortigosa, A.: Using decision trees for improving AEH courses. In: Romero, C., Ventura, S., Pechenizkiy, M., Baker, R.J.D. (eds.) Handbook of Educational Data Mining, pp. 365–376. Taylor & Francis, Boca Ration (2010)CrossRefGoogle Scholar
  5. Breiman, L.: Classification and regression trees. Chapman & Hall, Boca Raton (1998)Google Scholar
  6. Bremer, C.: Virtuelles lernen in gruppen: Rollenspiele und online-diskussionen und die bedeutung von lerntypen. In: Scheuermann, F. (ed.) Campus 2000: Lernen in Neuen Organisationsformen. Waxmann, Münster (2000)Google Scholar
  7. Brusilovsky, P.: Methods and techniques of adaptive hypermedia. User Modeling and User Adaptive Interfaces 6(2-3), 87–129 (1996)CrossRefGoogle Scholar
  8. Cesarini, M., Monga, M., Tedesco, R.: Carrying on the e-learning process with a workflow management engine. In: Proceedings of ACM Symposium on Applied Computing, pp. 940–945. ACM (2004)Google Scholar
  9. Dagger, D.: Personalised e-learning development environments. PhD Dissertation, University of Dublin (2006)Google Scholar
  10. de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic Process Mining: A Basic Approach and Its Challenges. In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 203–215. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. Dron, J.: Control and constraint in e-learning: Choosing when to choose. Information Science Reference-Imprint of IGI Publishing, University of Brighton (2007)CrossRefGoogle Scholar
  12. Favier, T., van der Schee, J.: Learning to think geographically with GIS. In: Donert, K., Wall, G. (eds.) Future Prospects in Geography, pp. 395–404. Liverpool Hope Press, UK (2008)Google Scholar
  13. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AAAI MIT Press (1996), http://www.aaai.org/ojs/index.php/aimagazine/article/view/1230/1131 (accessed December 24, 2011)
  14. Federico, P.A.: Learning styles and student attitudes toward various aspects of network-based instruction. Computers in Human Behaviour 16(4), 359–379 (2000)CrossRefGoogle Scholar
  15. Frawley, W.J., Piatetsky-Shapiro, G., Matheus, C.J.: Knowledge discovery in databases: An overview. In: Piatetsky-Shapiro, G., Frawley, W.J. (eds.) Knowledge Discovery in Databases, pp. 1–27. AAAI Press/MIT Press, Menlo Park (1991)Google Scholar
  16. Frias-Martinez, E., Chen, S.Y., Liu, X.: Survey of data mining approaches to user modeling for adaptive hypermedia. IEEE TSMC—Part C: Applications and Reviews 36(6), 734–749 (2006)Google Scholar
  17. Frosch-Wilke, D., Sànchez-Alonso, S., Dodero, J.M.: Evolutionary design of collaborative learning processes through reflective Petri nets. In: Proceedings of IEEE ICALT, pp. 423–427 (2008)Google Scholar
  18. Goodchild, M.F.: What is geographic information science? NCGIA Core Curriculum in Geographic Information Science. University of California Santa Barbara (1997), http://www.ncgia.ucsb.edu/giscc/units/u002/u002.html (accessed July 23, 2011)
  19. Graf, S., Liu, T.C., Kinshuk, C.N.S., Yang, S.J.H.: Learning styles and cognitive traits: Their relationship and its benefits in web-based educational systems. Computers in Human Behaviour 25, 1280–1289 (2009)CrossRefGoogle Scholar
  20. Grob, H.L., Bensberg, F., Coners, A.: Regelbasierte steuerung von geschäftsprozessen-konzeption eines ansatzes auf basis des process mining. In: Die Wirtschaftsinformatik, pp. 268–281 (2008)Google Scholar
  21. Hasselerharm, E., Leemkuil, H.: The relation between instructional control strategies and performance and attitudes in computer-based instruction. In: Pieters, J.M., Simons, P.R.J., de Leeuw, L. (eds.) Research on Computer-Based Instruction, pp. 67–80. Swets & Zeitlinger, Amsterdam (1990)Google Scholar
  22. Helic, D.: Technology-supported management of collaborative learning processes. International Journal of Learning and Change 1(3), 285–298 (2006)CrossRefGoogle Scholar
  23. Holman, D., Pavlica, K., Thorpe, R.: Rethinking Kolb’s theory of experiential learning in management education. In: Management Learning, pp. 135–148. Sage, London (1997)Google Scholar
  24. Holzhüter, M., Frosch-Wilke, D., Sánchez-Alonso, S.: Discussion of the benefit potentials of process mining for e-learning processes. In: Proceedings of CSEDU, pp. 407–411 (2010)Google Scholar
  25. Jonassen, D.H., Grabowski, B.L.: Handbook of individual differences learning, and instruction. Lawrence Erlbaum, Hillsdale (1993)Google Scholar
  26. KEEL. Knowledge Extraction based on Evolutionary Learning (2011), http://www.keel.es/ (accessed July 23 , 2011)
  27. Kirschner, P.A., Sweller, J., Clark, R.E.: Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist 41, 75–86 (2006)CrossRefGoogle Scholar
  28. Kleimann, B.: Kapazitätseffekte von e-learning an deutschen hochschulen HIS. Hochschul-Informations-System GmbH (2008), http://www.his.de/pdf/pub_fh/fh-200806.pdf (accessed July 23, 2011)
  29. Klein, U.: Geomedienkompetenz: Untersuchung zur akzeptanz und anwendung von geomedien im geographieunterricht unter besonderer berücksichtigung moderner informations- und kommunikationstechniken. PhD Dissertation, Geographisches Institut der Universität Kiel (2008)Google Scholar
  30. Kobsa, A.: Editorial UMUAI: Special Issue on User Modeling Shell Systems. User Modeling and User Adaptive Interfaces 1 (1991)Google Scholar
  31. Kolb, D.A.: Experiential learning: experience as the source of learning and development. Prentice Hall, Englewood Cliffs (1984a)Google Scholar
  32. Kolb, D.A.: Learning styles inventory. McBer and Company, Boston (1984b)Google Scholar
  33. Kolb, D.A., Rubin, I.M., Osland, J.: Organizational behavior: An experiential approach. Prentice Hall, Englewood Cliffs (1995)Google Scholar
  34. Lang, M., Bürkle, T., Laumann, S., Prokosch, H.U.: Prokosch. H. U. Process mining for clinical workflows: challenges and current limitations. Stud. Health Technol. Inform. 136, 229–234 (2008)Google Scholar
  35. Lee, S.S., Wong, S.C.H.: Adaptive program vs. learner control strategy on computer aided learning of gravimetric stoichiometry problems. Journal of Research on Computing in Education 21, 367–379 (1989)Google Scholar
  36. Lehmann, R.: Lernstile als grundlage adaptiver lernsysteme in der softwareschulung. Waxmann, Münster (2010)Google Scholar
  37. Liu, W.: Using data mining to dynamically build up just in time learner models. Master thesis, University of Saskatchewan, Canada (2009)Google Scholar
  38. MoodleDocs (2011), http://docs.moodle.org/ (accessed July 23, 2011)
  39. Moore, M.G.: Independent study. In: Boyd, R., Apps, J. (eds.) Redefining the Discipline of Adult Education, pp. 16–31. Jossey-Bass, San Fransisco (1980)Google Scholar
  40. Morgan, C.: Experiential perspectives. In: Spector, J.M. (ed.) Handbook of Research on Educational Communications and Technology, pp. 33–37. Routledge, N.Y. (2008)Google Scholar
  41. Nguyen, L., Phung, D.: Learner model in adaptive learning. World Academy of Science, Engineering and Technology 45, 395–400 (2008)Google Scholar
  42. O’Connor, T.: Using learning styles to adapt technology for higher education. Indiana State University (1998)Google Scholar
  43. Pechenizkiy, M., Trčka, N., Vasilyeva, E., van der Aalst, W.M.P., de Bra, P.: Process mining online assessment data. In: Proceedings of EDM, pp. 279–288 (2009)Google Scholar
  44. Perez-Rodriguez, R., Caeiro-Rodriguez, M., Anido-Rifon, L.: Supporting PoEML educational processes in Moodle: A middleware approach. In: Proceedings of SPDECER (2008)Google Scholar
  45. ProMimport (2011), http://www.win.tue.nl/processmining/promimport/start (accessed July 23, 2011)
  46. Rachbauer, T.: Adaption von e-learning systemen: Moodle im vergleich zu anderen open-source-learning-content-management-systemen. Igel, Hamburg (2009)Google Scholar
  47. Romero, C., Ventura, S., Garcia, E.: Data mining in course management systems: Moodle case study and tutorial. Computers & Education 51, 368–384 (2008)CrossRefGoogle Scholar
  48. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring real behavior. Information Systems 33(2), 64–95 (2008)CrossRefGoogle Scholar
  49. Staemmler, D.: Lernstile und interaktive lernprogram: Kognitive komponenten des lernerfolges in virtuellen lernumgebungen. In: Gabler Edition Wissenschaft: Multimedia und Telekooperation. Deutscher Universitäts-Verlag, Wiesbaden (2006)Google Scholar
  50. Stahlknecht, P., Hasenkamp, U.: Einführung in die wirtschaftsinformatik. Springer, Heidelberg (2005)Google Scholar
  51. Trčka, N., Pechenizkiy, M., van der Aalst, W.: Process mining from educational data. In: Romero, C., Ventura, S., Pechenizkiy, M., Baker, R.J.D. (eds.) Handbook on Educational Data Mining, pp. 123–142. Chapman & Hall/CRC, Boca Raton (2010)CrossRefGoogle Scholar
  52. Tynjälä, P., Häkkinen, P.: E-learning at work: Theoretical underpinnings and pedagogical challenges. Journal of Workplace Learning 17(5-6), 318–336 (2005)CrossRefGoogle Scholar
  53. van der Aalst, W., Weijters, A., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE TKDE 16(9), 1128–1142 (2004)Google Scholar
  54. van Dongen, B., Medeiros, A., Verbeek, H., Weijters, A.: The ProM framework: A new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ATPN Nets 2005, pp. 444–454. Springer, Berlin (2005)Google Scholar
  55. Weijters, A., van der Aalst, W.M.P., de Medeiros A.A.: Process mining with the heuristics miner-algorithm. Technical Report WP 166, BETA Working Paper Series, Eindhoven Univ. of Technology (2006)Google Scholar
  56. Zukerman, I., Albrecht, D.W.: Predictive statistical models for user modeling. In: User Modeling and User Adaptive Interfaces, 11, pp. 5–18. Springer, Netherlands (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marianne Holzhüter
    • 1
  • Dirk Frosch-Wilke
    • 1
  • Ulrike Klein
    • 2
  1. 1.University of Applied SciencesKielGermany
  2. 2.Zentrum für GeoinformationeUniversity of KielKielGermany

Personalised recommendations