Advertisement

Acquisition of Higher Order Knowledge by a Dynamic Modeling Environment Based on the Educational Concept of Self-Regulated Learning

  • Stefanie A. Hillen
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 17)

Abstract

I aim to show that learning with this modeling based Educational Learning System (ELS) can accomplish the target of achieving higher order knowledge. The ELS is a system consisting of internal and external elements. The external prerequisites consist of technical and physical elements and the internal ones are shaped by the students pre-knowledge and the instructors teaching competencies including his/her social, emotional, and disciplinary knowledge necessary for teaching. The ELS is based on a theoretical framework of different theories and models such as concept mapping, elaboration of mental models, cognitive tool-approach, and self-regulated learning (SRL). Different features for visualization and modeling of the subject matter to be learned can be chosen by the students as well as the frequencies using the simulation feature to receive feedback to the model constructed. This enables the students to work self-regulated because of the feedback of the system, by providing the simulation results in desired graphical or analytical representation formats. The notation of the ELS, the symbols themselves are considered as an intuitive language because the symbols are connected to real world phenomena. It is assumed that the expression of knowledge is co-determined by the applied language. It is concluded that a less differentiated language does not hinder thinking but does not support thinking as a ‘cognitive tool’. Hence the hypothesis is: there are significant differences in the complexity of the expressed knowledge of the students using the notation in comparison to a control group using verbal protocols to express the knowledge acquired.

Keywords

Mental Model Cognitive Conflict High Order Thinking Advance Organizer Cognitive Tool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alessi, S.: Modeling a system and teaching a system: Enhancing what students learn from modeling. In: Blumschein, P., Hung, W., Jonassen, D., Strobel, J. (eds.) Model-based Approaches to Learning: Using Systems Models and Simulations to Improve Understanding and Problem Solving in Complex Domains, pp. 199–214. Sense Publishers, Rotterdam (2009)Google Scholar
  2. Ausubel, D.P.: The use of advance organizers in the learning and retention of meaningful verbal material. Journal of Educational Psychology 51, 267–272 (1960)CrossRefGoogle Scholar
  3. Bandura, A.: Self-efficacy: The exercise of control. W.H. Freeman, New York (1997)Google Scholar
  4. Beck, K., Krumm, V.: Wirtschaftskundlicher Bildungs-Test (WBT). Handanweisung. Hogrefe, Göttingen (1998)Google Scholar
  5. Berendes, K.: Lenkungskompetenz in komplexen ökonomischen Systemen. Wiesbaden, Gabler (2002)Google Scholar
  6. Beschluss der, K.M.K: Rahmenlehrplan für den Ausbildungsberuf Indus-triekaumann/Industriekauffrau, vom. 9 (Juni 1995)Google Scholar
  7. Beschluss der, K.M.K.: Rahmenlehrplan für den Ausbildungsberuf Industriekaufmann/Industriekauffrau, vom. 14 (Juni 2002)Google Scholar
  8. Bliss, J.: From mental models to modeling. In: Mellar, H., Bliss, J., Boohan, R., Ogborn, J., Tompsett, C. (eds.) Learning with Artificial Worlds, pp. 27–32. The Falmer Press, London (1994)Google Scholar
  9. Byrknes, A.H., Myrtveit, M.: Learning dynamic modeling. Powersim Press (1996)Google Scholar
  10. Collins, A.M., Quillian, M.R.: Retrieval time from semantic memory. Journal of Verbal Learning and Verbal Memory 8, 240–247 (1969)CrossRefGoogle Scholar
  11. Dann, H.D.: Variationen von Lege-Strukturen zur Wissensrepräsentation. In: Scheele, B. (ed.) Struktur-Lege-Verfahren als Dialog-Konsens-Methodik, pp. 3–38. Aschendorf, Münster (1992)Google Scholar
  12. de Jong, T.: Instruction based on computer simulations. In: Mayer, R.E., Alexander, P.A. (eds.) Handbook of Research on Learning and Instruction, pp. 446–466. Routledge Press, New York (2010)Google Scholar
  13. de Jong, T., van Joolingen, W.R.: Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research 68, 179–201 (1998)Google Scholar
  14. Dochy, F., Segers, M., Buehl, M.: The relation between assessment practices and out-comes of studies: The case of research on prior knowledge. Review of Educational Research 69, 145–186 (1999)Google Scholar
  15. Dörner, D.: Problemlösen als informationsverarbeitung. Kohlhammer, Stuttgart (1976)Google Scholar
  16. Forrester, J.W.: Grundzüge einer systemtheorie (Principles of systems). Gabler, Wiesbaden (1972)Google Scholar
  17. Forrester, J.W.: Industrial dynamics. Productivity Press, Portland (1961)Google Scholar
  18. Früh, W.: Inhaltsanalyse, theorie und praxis. 5. UVK Verlag, Aufl. Konstanz (2001)Google Scholar
  19. Hillen, S.: The role of worksheets in media based instruction: A didactic and diagnostic approach. In: Hillen, S., Sturm, T., Willbergh, I. (eds.) Challenges Facing Contemporary Didactics, pp. 169–184. Waxmann, Münster (2011)Google Scholar
  20. Hillen, S., Breuer, K., Tennyson, R.: Gaming and learning: Theory, research, and practice. In: Hillen, S., Sturm, T., Willbergh, I. (eds.) Challenges Facing Contemporary Didactics, pp. 1185–1198. Waxmann, Münster (2011)Google Scholar
  21. Hillen, S.: Die Abbildung von qualitäten des wissens zu kaufmännischen sachverhalten ein inhaltsanalytischer Zugang. In: Minnameier, G., Wuttke, E. (eds.) Berufs und wirtschaftspädagogische Grundlagenforschung. Lehr-Lern-Prozesse und Kompetenzdiag-nostik, pp. 377–389. Lang, Festschrift für K. Beck. Frankfurt a. M. (2006a)Google Scholar
  22. Hillen, S.: Zum erwerb generischer erklärungsmuster zu kaufmännischen sachverhalten in orientierung an ein systemdynamisches modellunternehmen. In: bwp@ Berufs und Wirtschaftspädagogik (2006b), http://www.bwpat.de/ausgabe10/hillen_bwpat10.shtml (accessed August 20, 2011)
  23. Hillen, S.: Systemdynamische modellbildung und simulation im kaufmännischen unterricht: Elizitation und elaboration von mentalen modellen in komplexen betrieb-swirtschaftlichen gegenstandsbereichen. Dissertation. Konzepte des Lehrens und Lernens. 10. Peter Lang Verlag, Frankfurt/Main (2004)Google Scholar
  24. Hillen, S., Berendes, K., Breuer, K.: Systemdynamische modellbildung als werkzeug zur visualisierung, Modellierung und diagnose von wissensstrukturen. In: Mandl, H., Fischer, F. (eds.) Wissen sichtbar machen: Begriffsnetze als werkzeuge für das wissensmanagement in lehr- und lernprozessen, pp. 71–89. Hogrefe, Göttingen (2000)Google Scholar
  25. Johnson-Laird, P.N.: The computer and the mind. An introduction to cognitive science. University Press, Cambridge (1988)Google Scholar
  26. Johnson-Laird, P.N.: Mental models: Towards a cognitive science of language, inference and consciousness. University Press, Cambridge (1983)Google Scholar
  27. Jonassen, D.H.: What are cognitive Tools? In: Kommers, P.A.M., Jonassen, D.H., Mayes, J.T. (eds.) Cognitive Tools for Learning, pp. 1–6. Springer, Heidelberg (1991)Google Scholar
  28. Josyula, D.P., Hughes, F.C., Vadali, H., Donahue, B.J., Molla, F., Snowden, M., Miles, J., Kamara, A., Maduka, C.: Metacognition for self-regulated learning in a dynamic environment. In: Proceedings of IEEE SASOW, pp. 261–268 (2010)Google Scholar
  29. Kluwe, R.H.: Cognitive knowledge and executive control: Metacognition. In: Griffin, D. (ed.) Animal Mind – Human Mind. Springer, New York (1982)Google Scholar
  30. Kluwe, R.H., Haider, H.: Modelle zur internen repräsentation komplexer technischer systeme. Sprache und Kognition 9(4), 173–192 (1990)Google Scholar
  31. Kolloffel, B., Eysink, T.H.S., de Jong, T.: The role of external representations in learning combinatorics and probability theory. In: Verschaffel, L., de Corte, E., de Jong, T., Elen, J. (eds.) Use of External Representations in Reasoning and Problem Solving, pp. 169–191. Routledge Press, Abingdon, Ox (2010)Google Scholar
  32. Lajoie, S.P., Azevedo, R.: Teaching and learning in technology-rich environments. In: Alexander, P.A., Winne, P.H. (eds.) Handbook of Educational Psychology, 2nd edn., pp. 803–821. Erlbaum, Mahwah (2006)Google Scholar
  33. Mandl, H., Spada, H.: Wissenspsychologie: Einführung. In: Mandl, H., Spada, H. (eds.) Wissenspsychologie, pp. 1–16. Psychologie Verlags Union, Münche (1988)Google Scholar
  34. MacGregor, S.K.: Hypermedia navigation profiles: Cognitive characteristics and information processing strategies. Journal of Educational Computing Research 20(2), 189–206 (1999)CrossRefGoogle Scholar
  35. Molkenthin, R., Breuer, K., Tennyson, R.D.: Real-time diagnostics of problem solving behavior for business simulations. In: Baker, E.L., Dickieson, J., Wulfeck, W., O’Neil, H.F. (eds.) Assessment of Problem Solving Using Simulations, pp. 201–221. Lawrence Erlbaum Associates, London (2008)Google Scholar
  36. Moos, D.C., Azevedo, R.: Self-regulated learning with hypermedia: The role of prior domain knowledge. Contemporary Educational Psychology 33(2), 270–298 (2008)CrossRefGoogle Scholar
  37. Norman, D.A.: Cognitive engineering. In: Norman, D.A., Draper, S.W. (eds.) User-Centered Design, pp. 31–62. Erlbaum, Hillsdale (1986)Google Scholar
  38. Norman, D.A.: Some observations on mental models. In: Gentner, D., Stevens, A.L. (eds.) Mental Models, pp. 7–14. Erlbaum, Hillsdale (1983)Google Scholar
  39. Oerter, R.: Psychologie des denkens. Auer, Donauwörth (1971)Google Scholar
  40. Pintrich, P.R.: The role of goal orientation in self-regulated learning. In: Boekaerts, M., Pintrich, P.R., Zeidner, M. (eds.) Handbook of Self-Regulation, pp. 451–502. Academic, San Diego (2000)CrossRefGoogle Scholar
  41. PZ-Informationen. Nichtlineare dynamische Systeme und Chaos. Handreichungen zum neuen Lehrplan Physik in der SII, 3. PZ, Bad Kreuznach (2000)Google Scholar
  42. Ryssel, J., Sommer, S., Fürstenau, B., Kunath, J.: The effect of different concept mapping techniques on promoting students’ learning processes in the field of business. In: Canas, A.J., Reiska, P., Ahlberg, M., Novak, J.D. (eds.) Proceedings of CMC Concept Mapping: Connecting Educators, pp. 238–241 (2008)Google Scholar
  43. Salomon, G.: AI in reverse: Computer tools that turn cognitive. Journal of Educational Computing Research 4(2), 123–139 (1988)CrossRefGoogle Scholar
  44. Salomon, G., Perkins, D.N., Globerson, T.: Partners in cognition: Extending human intel-ligence with intelligent technologies. Educational Researcher 4, 2–9 (1991)Google Scholar
  45. Scheele, B., Groeben, N.: Dialog-konsens-methoden zur rekonstruktion subjektiver theorien (Structure-laying technique for reconstructing subjective theories ”every day-life”-theories). Francke, Tübingen (1988)Google Scholar
  46. Schunk, D.H., Zimmerman, B.J. (eds.): Self-regulated learning: from teaching to self-reflective practice. Guilford Press, New York (1998)Google Scholar
  47. Simons, P.R.J.: Lernen selbständig zu lernen - ein rahmenmodell. In: Mandl, H., Friedrich, H.F. (eds.) Lern- und denkstrategien: Analyse und intervention, pp. 251–264. Hogrefe, Göttingen (1992)Google Scholar
  48. Spector, J.M., Christensen, D.L., Sioutine, A.V., McCormack, D.: Models and simulations for learning in complex domains: Using causal loop diagrams for assessment and evaluation. Computers in Human Behavior 17, 517–545 (2001)CrossRefGoogle Scholar
  49. Sterman, J.D.: Business dynamics: Systems thinking and modeling for a complex world. McGraw-Hill, Boston (2000)Google Scholar
  50. Sweller, J.: Cognitive load during problem solving: Effects on learning. Cognitive Science 12, 257–285 (1988)CrossRefGoogle Scholar
  51. Ulrich, H., Probst, G.J.B.: Anleitung zum ganzheitlichen denken und handeln 4. Haupt, Aufl. Wien (1995)Google Scholar
  52. van Borkulo, S.P., van Joolingen, W.R., Savlesbergh, E.R., de Jong, T.: A framework for the assesssment of learning by modeling. In: Blumschein, P., Hung, W., Jonassen, D., Strobel, J. (eds.) Model-based approaches to learning: Using systems models and simulations to improve understanding and problem solving in complex domains, pp. 179–195. Sense Publishers, Rotterdam (2009)Google Scholar
  53. van Joolingen, W.R., Lazonder, A.W., de Jong, T., Savlesbergh, E.R., Manlove, S.: Co-Lab: Research and development of an online learning environment for collaborative scientific discovery learning. Computers in Human Behavior 21, 671–688 (2005)CrossRefGoogle Scholar
  54. Vandevelde, S., van Keer, H., de Wever, B.: Exploring the impact of student tutoring on at-risk fifth and sixth graders’ on self-regulated learning. Learning and Individual Differences 21, 419–425 (2011)CrossRefGoogle Scholar
  55. Verburgh, L.D.: Participative policy modeling applied to the health care insurance industry. Benda, Nijmegen (1996)Google Scholar
  56. Willerman, M., MacHarg, R.A.: The concept map as an advance organizer. Journal of Research in Science Teaching 28, 705–711 (1991)CrossRefGoogle Scholar
  57. Winters, F.I., Greene, J.A., Costich, C.M.: Self-regulation of learning within computer-based learning environments: A critical analysis. Educational Psychology Review 20(4), 429–444 (2008)CrossRefGoogle Scholar
  58. Zimmerman, B.J.: Investigating self-regulation and motivation: Historical background, methodological developments and future prospects. American Educational Research Journal 45, 166–183 (2008)CrossRefGoogle Scholar
  59. Zimmerman, B.J.: Attaining self-regulation: A social cognitive perspective. In: Boekaerts, M., Pintrich, P.R., Zeidner, M. (eds.) Handbook of self-regulation, pp. 13–39. Academic, San Diego (2000)CrossRefGoogle Scholar
  60. Zimmerman, B.J.: Models of self-regulated learning and academic achievement. In: Zimmerman, B.J., Schunk, D.H. (eds.) Self-regulated Learning and Academic Achievement. Theory, Research and Practice, pp. 1–25. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  61. Zimmerman, B.J., Schunk, D.H.: Self-regulated learning and academic achievement. Theoretical perspectives, 2nd edn. Laurence Erlbaum Associates, Mahwah (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of AgderKristiansandNorway

Personalised recommendations