Neuroscience for Business

  • Argang Ghadiri
  • Andreas Habermacher
  • Theo Peters
Part of the Management for Professionals book series (MANAGPROF)


The brain and the neurosciences may be an unexplored field for many readers and so we aim in this chapter to jump into some of the specifics of the brain: to understand how it develops, how it functions and what this means for us. We will start with a very brief history of neuroscience before moving into the brain and its formation and functioning. We will then throw a spotlight on the technology that is driving the research before moving in to some specifics of brain functions that have a key impact on business and how we operate.


Cerebral Cortex Prefrontal Cortex Diffusion Tensor Image Emotional Intelligence Limbic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bruce, L.L. & Braford, M.R., 2009. Evolution of the Limbic System. Encyclopedia of Neuroscience, pp. 43–55Google Scholar
  2. Carey, J. (2006). Brain facts: A primer on the brain and nervous system (p. 11). Washington, DC: Society for euroscience Society for euroscience.Google Scholar
  3. Heidecker, K.-M. (2006). Trepanation of the skull in classical antiquity. Wurzburger medizinhistorische Mitteilungen im Auftrage der Wurzburger medizinhistorischen Gesellschaft und in Verbindung mit dem Institut fur Geschichte der Medizin der Universitat Wurzburg, 25, 113–131.Google Scholar
  4. Kandel, E. R. (2006a). In search of memory (p. 120). New York: W. W Norton & Company.Google Scholar
  5. Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science (Vol. 3, no. 22, p. 1414). New York: McGraw-Hill.Google Scholar
  6. Banks, S. J. et al. (2007). Amygdala – frontal connectivity during emotion regulation. Comparative and General Pharmacology, 303–312.Google Scholar
  7. Bear, M. T., Connors, B. W., & Paradiso, M. A. (2006). Neuroscience: Exploring the brain (Vol. 5, no. 3, p. 928). Baltimore: Lippincott Williams & Wilkins.Google Scholar
  8. Gross, C. G. (1998). Galen and the squealing pig. The Neuroscientist, 4(3), 216.CrossRefGoogle Scholar
  9. Gurunluoglu, R., Shafighi, M., Gurunluoglu, A., & Cavdar, S. (2011). Giulio Cesare Aranzio (Arantius) (1530-89) in the pageant of anatomy and surgery. Journal of Medical Biography, 19(2), 63–69.CrossRefGoogle Scholar
  10. Bigelow, H. J., & Barnard, J. (2002). Phineas gage. Brain, 3(2), 843–857.Google Scholar
  11. Ioannides, A. A. (2009). Magnetoencephalography (MEG). F. Hyder, ed. Methods In Molecular Biology Clifton NJ, 489(1), 167–188.Google Scholar
  12. Gall, Fj., & Spurzheim, G. (1810). Anatomie et physologie du système nerveux en général et du cerveau en particulier. Tome 1. In Texte revue de critique et de theorie litteraire. Google Scholar
  13. Jones, E. G. (2007). Neuroanatomy: Cajal and after Cajal. Brain Research Reviews, 55(2), 248–255.CrossRefGoogle Scholar
  14. Tixier-Vidal, A. (2010). From the cell theory to the neuron theory. Biologie aujourdhui, 204(4), 253–266.CrossRefGoogle Scholar
  15. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500–544.Google Scholar
  16. Cowen, W.M. & Kandel, E.R., 2001. A Brief History of Synapses and Synaptic Transmission. In W. M. Cowen, T. C. Südhof, & Stevens C. F., eds. Synapses. Baltimore: John Hopkins University Press, pp. 1–88.Google Scholar
  17. MacLean, P. D. (1990). The triune brain in evolution: Role in paleocerebral functions (Vol. 5, no. 1, p. 68). New York: Springer.Google Scholar
  18. Murray, E. A. (2007). The amygdala, reward and emotion. Trends in Cognitive Sciences, 11(11), 489–497.CrossRefGoogle Scholar
  19. Brooks, C. M. (1988). The history of thought concerning the hypothalamus and its functions. Brain Research Bulletin, 20(6), 657–667.CrossRefGoogle Scholar
  20. Bechara, A., Damasio, H., & Damasio, A. R. (2003). Role of the amygdala in decision-making. Annals of the New York Academy of Sciences, 985(1), 356–369.CrossRefGoogle Scholar
  21. Kilcross, S. (2000). The amygdala, emotion and learning. The Psychologist, 13(10), 502–508.Google Scholar
  22. Maguire, E. A., et al. (Apr. 2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97(8), 4398–4403.CrossRefGoogle Scholar
  23. Maguire, E. A., Woollett, K., & Spiers, H. J. (2006). London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus, 16(12), 1091–1101.CrossRefGoogle Scholar
  24. Hynie, S., & Klenerová, V. (1991). Neurobiology of memory. LEncephale, 59(2), 295–303.Google Scholar
  25. Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9(5), 242–249.CrossRefGoogle Scholar
  26. Shaw, C. A., & McEachern, J. C. (2001). Toward a theory of neuroplasticity. Philadelphia: Psychology Press.Google Scholar
  27. Squire, L. R. (2009). The legacy of patient H.M. for neuroscience. Neuron, 61(1), 6–9.CrossRefGoogle Scholar
  28. Sacks, O. (1985). The man who mistook his wife for a hat and other clinical tales (1985). New York: Summit Books.Google Scholar
  29. Gage, G. J., Parikh, H., & Marzullo, T. C. (2008). The cingulate cortex does everything. Biomedical Engineering, 14(3), 55.Google Scholar
  30. Wise, R. A. (2002). Brain reward circuitry. Neuron, 36, 229–240.CrossRefGoogle Scholar
  31. Saunders, B. T., & Richard, J. M. (2011). Shedding light on the role of ventral tegmental area dopamine in reward. The Journal of Neuroscience, 31(50), 18195–18197.CrossRefGoogle Scholar
  32. Liu, Y. (2003). Nucleus accumbens oxytocin and dopamine interact to regulate pair bond formation in female prairie voles. Neuroscience, 121(3), 537–544.CrossRefGoogle Scholar
  33. Baumgartner, T., Heinrichs, M., Vonlanthen, A., Fischbacher, U., & Fehr, E. (2008). Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. Neuron, 58(4), 639–650.CrossRefGoogle Scholar
  34. Setlow, B. (1997). Mini-review the nucleus accumbens and learning and memory. Journal of Neuroscience Research, 521, no. June, 515–521.CrossRefGoogle Scholar
  35. Ganel, T., Valyear, K. F., Goshen-Gottstein, Y., & Goodale, M. A. (2005). The involvement of the ‘fusiform face area’ in processing facial expression. Neuropsychologia, 43(11), 1645–1654.CrossRefGoogle Scholar
  36. McIntyre, C. K., Power, A. E., Roozendaal, B., & McGaugh, J. L. (2003). Role of the basolateral amygdala in memory consolidation. Progress in Neurobiology, 70(5), 273–293.Google Scholar
  37. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167–202.CrossRefGoogle Scholar
  38. Kolb, B., & Whishaw, I. Q. (1998). Brain plasticity and behavior. Annual Review of Psychology, 49(1), 43–64.CrossRefGoogle Scholar
  39. Rolls, E. T. (2001). Emotion, neural basis of. In N. J. Smelser & P. B. Baltes (Eds.), International encyclopedia of social behavioral sciences (pp. 4444–4449). Oxford: Pergamon.CrossRefGoogle Scholar
  40. Isaacson, R.L., Neil J Smelser & Paul B Baltes, 2001. Limbic System N. J. Smelser & P B Baltes, eds. International Encyclopedia of Social Behavioral Sciences, 2(February), pp. 8858–8862.Google Scholar
  41. Nakatani, Y., et al. (2009). Why the carrot is more effective than the stick: different dynamics of punishment memory and reward memory and its possible biological basis. Neurobiology of Learning and Memory, 92(3), 370–380.CrossRefGoogle Scholar
  42. Rizzolatti, G. (2008). Mirrors in the brain: How our minds share actions and emotions. Oxford: Oxford University Press.Google Scholar
  43. Ramachandran, V. (2009). Versus ramachandran: The neurons that shaped civilization. TEDcom.
  44. Kantor, D. B., & Kolodkin, A. L. (2003). Curbing the excesses of youth: Molecular insights into axonal pruning. Neuron, 38(6), 849–852.CrossRefGoogle Scholar
  45. Pascalis, O., et al. (2005). Plasticity of face processing in infancy. Proceedings of the National Academy of Sciences of the United States of America, 102(14), 5297–5300.CrossRefGoogle Scholar
  46. Kandel, E. R. (2006). In search of memory (p. 280). New York: W. W. Norton & Company.Google Scholar
  47. Kandel, E. R., & Tauc, L. (1965). Mechanism of heterosynaptic facilitation in the giant cell of the abdominal ganglion of Aplysia depilans. The Journal of Physiology, 181(1), 28–47.Google Scholar
  48. LeDoux, J.E., 1991. Emotion and the limbic system concept. Concepts in Neuroscience, 2(2), pp. 169–199.Google Scholar
  49. Hüther, G. (2006). Brainwash – Einführung in die Neurobiologie für Pädagogen. Auditorium Netzwerk: Therapeuten und Lehrer.Google Scholar
  50. Arias-Carrión, O., Stamelou, M., Murillo-Rodríguez, E., Menéndez-González, M., & Pöppel, E. (2010). Dopaminergic reward system: A short integrative review. International archives of medicine, 3(1), 24.CrossRefGoogle Scholar
  51. Olds, J., & Milner, P. (1954). Positive reinforcement produced by electrical stimulation of septal area and other areas of the brain. Journal of Comparative and Physiological Psychology, 47, 419–427.CrossRefGoogle Scholar
  52. Nieoullon, A. (2002). Dopamine and the regulation of cognition and attention. Progress in Neurobiology, 67(1), 53–83.CrossRefGoogle Scholar
  53. Kringelbach, M. L., & Berridge, K. C. (2009). Towards a functional neuroanatomy of pleasure and happiness. Trends in Cognitive Sciences, 13(11), 479–487.CrossRefGoogle Scholar
  54. Ploog, D., 1980. Emotions as products of the limbic system. Medizinische Psychologie, 6, pp. 7–19Google Scholar
  55. Adolphs, R. (2003). Cognitive neuroscience of human social behaviour. Nature Reviews Neuroscience, 4(3), 165–178.CrossRefGoogle Scholar
  56. Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Brain Research, 3(2), 131–141.Google Scholar
  57. Ramachandran, V. S. (2000). Mirror neurons and imitation learning as the driving force behind “the great leap forward” in human evolution. New York: Morrow.
  58. Williams, J. H., Whiten, A., Suddendorf, T., & Perrett, D. I. (2001). Imitation, mirror neurons and autism. Neuroscience and Biobehavioral Reviews, 25(4), 287–295.CrossRefGoogle Scholar
  59. Rizzolatti, G., & Fabbri-Destro, M. (2010). Mirror neuron mechanism. In G. F. Koob, M. L. Moal, & R. F. Thompson (Eds.), Encyclopedia of behavioral neuroscience (pp. 240–249). Burlington: Academic.CrossRefGoogle Scholar
  60. Gordon, M. (2003). Roots of empathy. The Keio Journal of Medicine, 52(4), 236–243.CrossRefGoogle Scholar
  61. Dumas, G., Nadel, J., Soussignan, R., Martinerie, J., & Garnero, L. (2010). Inter-brain synchonization during social interaction. PLoS One, 5(8), e12166.CrossRefGoogle Scholar
  62. Matthews, P., & Jezzard, P. (2004). Functional magnetic resonance imaging. Journal of Neurology, Neurosurgery & Psychiatry, 82(4), 6–12.Google Scholar
  63. Davidson, R. J., Jackson, D. C., & Larson, C. L. (2000). Human electroencephalography. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (Vol. 2, pp. 27–52). New York: Cambridge University Press.Google Scholar
  64. Meg, M. (2004). Introduction to magnetoencephalography. Neurosurgery, (1), 1–7.Google Scholar
  65. Casse, R., Rowe, C. C. C. C., Newton, M., Berlangieri, S. U. S. U., & Scott, A. M. A. M. (2004). Positron emission tomography and positron emission. Molecular Imaging and Biology, 6(2), 72–73.Google Scholar
  66. Davis, M. (1997). Neurobiology of fear responses: The role of the amygdala. The Journal of Neuropsychiatry and Clinical Neurosciences, 9(3), 382–402.Google Scholar
  67. Tournier, J.-D., Mori, S., & Leemans, A. (2011). Diffusion tensor imaging. Rinsho shinkeigaku Clinical neurology, 48(6), 1532–1556.Google Scholar
  68. Lerch, J., Lau, C., Ng, L., Hawrylycz, M., & Henkelman, R. (2009). The Allen Institute mouse brain gene expression data co-aligned with a mouse MRI atlas. In Proceedings 17th scientific meeting, international society for magnetic resonance in medicine, (Vol. 42, p. 949).Google Scholar
  69. Holmes, D. (2011). Mapping the brain: of mice and men. The Lancet, 10(8), 684–685.CrossRefGoogle Scholar
  70. Kobayashi, M., & Pascual-Leone, A. (2003). Transcranial magnetic stimulation in neurology. Lancet Neurology, 2(3), 145–156.CrossRefGoogle Scholar
  71. Nishimoto, S., Vu, A. T., Naselaris, T., Benjamini, Y., Yu, B., & Gallant, J. L. (2011). Reconstructing visual experiences from brain activity evoked by natural movies. Current Biology, 21(19), 1–6.CrossRefGoogle Scholar
  72. Schönpflug, W. (2000). Geschichte der Emotionskonzepte. In J. H. Otto, H. A. Euler, & H. Mandl (Eds.), Emotionspsychologie Ein Handbuch (pp. 19–28). Weinheim: Beltz.Google Scholar
  73. Fiedler, K. (1988). Emotional mood, cognitive style, and behavior regulation. In K. Fiedler & J. P. Forgas (Eds.), Affect cognition and social behavior (pp. 100–119). Toronto: Hogrefe.Google Scholar
  74. Ekman, P., Friesen, W. V., & Ellsworth, P. (1982). Emotion in the human face (Vol. 2, p. 464). Cambridge: Cambridge University Press.Google Scholar
  75. Gardner, H. (1983). Frames of mind (2nd ed., p. 463). New York: Basic books (first pub 1984).Google Scholar
  76. Goleman, D., Boyatzis, R., & McKee, A. (2001). Primal leadership: The hidden driver of great performance. Harvard Business Review, 79(11), 42–51.Google Scholar
  77. Swaab, D. F., Bao, A.-M., & Lucassen, P. J. (2005). The stress system in the human brain in depression and neurodegeneration. Ageing Research Reviews, 4(2), 141–194.CrossRefGoogle Scholar
  78. Amir-Zilberstein, L., et al. (2012). Homeodomain protein Otp and activity-dependent splicing modulate neuronal adaptation to stress. Neuron, 73(2), 279–291.CrossRefGoogle Scholar
  79. Dolan, R. J. (2007). The human amygdala and orbital prefrontal cortex in behavioural regulation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1481), 787–799.CrossRefGoogle Scholar
  80. Siegle, G. J., Thompson, W., Carter, C. S., Steinhauer, S. R., & Thase, M. E. (2007). Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: Related and independent features. Biological Psychiatry, 61(2), 198–209.CrossRefGoogle Scholar
  81. Shelton, J. T., Elliott, E. M., Matthews, R. A., Hill, B. D., & Gouvier, W. D. (2010). The relationships of working memory, secondary memory, and general fluid intelligence: working memory is special. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(3), 813–820.CrossRefGoogle Scholar
  82. Feinstein, J. S., Adolphs, R., Damasio, A., & Tranel, D. (2010). The human amygdala and the induction and experience of fear. Current Biology, 21(1), 1–5.Google Scholar
  83. Whalen, P. J., Shin, L. M., McInerney, S. C., Fischer, H., Wright, C. I., & Rauch, S. L. (2001). A functional MRI study of human amygdala responses to facial expressions of fear versus anger. Emotion Washington Dc, 1(1), 70–83.CrossRefGoogle Scholar
  84. Whalen, P. J., Rauch, S. L., Etcoff, N. L., McInerney, S. C., Lee, M. B., & Jenike, M. A. (1998). Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. The Journal of Neuroscience, 18(1), 411–418.Google Scholar
  85. Küpers, W., & Weibler, J. (2005). Emotionen in organisationen. Stuttgart: Kohlhammer.Google Scholar
  86. Salamon, S. D., & Robinson, S. L. (2008). Trust that binds: the impact of collective felt trust on organizational performance. The Journal of Applied Psychology, 93(3), 593–601.CrossRefGoogle Scholar
  87. Perry, E., Walker, M., Grace, J., & Perry, R. (1999). Acetylcholine in mind. Trends in Neurosciences, 22, 273–280.CrossRefGoogle Scholar
  88. Duman, E. A., & Canli, T. (2010). Serotonin and behavior (Vol. 21, pp. 449–456). Elsevier B.V.Google Scholar
  89. Koob, G. F. (1992). Dopamine, addiction and reward. Seminars in Neuroscience, 4(2), 139–148.CrossRefGoogle Scholar
  90. Van Winkle, E. (2000). The toxic mind: The biology of mental illness and violence. Medical Hypotheses, 55(1), 356–368.CrossRefGoogle Scholar
  91. Devauges, V., & Sara, S. J. (1990). Activation of the noradrenergic system facilitates an attentional shift in the rat. Behavioural Brain Research, 39(1), 19–28.CrossRefGoogle Scholar
  92. Auf dem Hövel, J. (2008). Pillen für den besseren Menschen. Wie Psychopharmaka, Drogen und Biotechnologie den Menschen der Zukunft formen. Hannover: Heise.Google Scholar
  93. Sahakian, B., & Morein-Zamir, S. (2007). Professor’s little helper. Nature, 450(7173), 1157–1159.CrossRefGoogle Scholar
  94. Krämer, K., & Nolting, H. D. (2009). Gesundheitsreport 2009, Analyse der Arbeitsunfähigkeitsdaten: Schwerpunktthema Doping am Arbeitsplatz. Hamburg: DAK.Google Scholar
  95. Talbot, M. (2009). Brain gain: The underground world of neuroenhancing drugs. New Yorker New York NY 1925, 32–43.Google Scholar
  96. Rae, C., Digney, A. L., McEwan, S. R., & Bates, T. C. (Oct. 2003). Oral creatine monohydrate supplementation improves brain performance: a double-blind, placebo-controlled, cross-over trial. Proceedings. Biological sciences / The Royal Society, 270(1529), 2147–2150.CrossRefGoogle Scholar
  97. Gelenberg, A. J., Wojcik, J. D., Gibson, C. J., & Wurtman, R. J. (1983). Tyrosine for depression. Journal of Psychiatric Research, 17(2), 175–180.CrossRefGoogle Scholar
  98. Seidel, W., 2004. Emotionale Kompetenz–Gehirnforschung und Lebenskunst, Heidelberg: Springer.Google Scholar
  99. Sperry, R. W. (1961). Cerebral Organization and Behavior: The split brain behaves in many respects like two separate brains, providing new research possibilities. Science, 133(3466), 1749–1757.CrossRefGoogle Scholar
  100. Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Verlag von Johann Ambrosius Barth.Google Scholar
  101. Loukas, M., et al. (2011). Korbinian Brodmann (1868–1918) and his contributions to mapping the cerebral cortex. Neurosurgery, 68(1), 6–11; discussion 11. Scholar
  102. Schacter, D. L. (1996). Searching for memory: The brain, the mind, and the past. New York: Basic Books.Google Scholar
  103. Schein, E. H. (1980). Organizational psychology (3rd ed.). Eaglewood Cliffs: Prentice-Hall.Google Scholar
  104. Davis, M., & Whalen, P. J. (2001). The amygdala: Vigilance and emotion. Molecular Psychiatry, 6(1), 13–34. Available at: Scholar
  105. Petrides, M. (2000). The role of the mid-dorsolateral prefrontal cortex in working memory. Experimental Brain Research Experimentelle Hirnforschung Experimentation Cerebrale, 133(1), 44–54. Available at:
  106. Gerson, M. C., Abdul-Waheed, M., & Millard, R. W. (2009). Of fight and flight. Journal of Nuclear Cardiology Official Publication of the American Society of Nuclear Cardiology, 16(2), 176–179.Google Scholar
  107. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Argang Ghadiri
    • 1
  • Andreas Habermacher
    • 2
  • Theo Peters
    • 1
  1. 1.Business Administration Bonn-Rhine-SiegUniversity of Applied SciencesSankt AugustinGermany
  2. 2.ctp, corporate training programmesZuerichSwitzerland

Personalised recommendations