Histogram Correlation for Video Scene Change Detection

  • Nisreen I. Radwan
  • Nancy M. Salem
  • Mohamed I. El Adawy
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 166)

Abstract

In this paper a novel and simple scene change detection algorithm based on the correlation between the frames of the video is proposed. The first frame of the video is taken as a reference frame. The correlation between the histogram of the reference frame and the histogram of all video frames is computed. The plotting of the relationship between the computed correlation values and frame number illustrates the differentiation between scene and motion changes. When the correlation values are constant over a number of frames, so there is a motion scene where the background is not changed. While changing the correlation values over a number of frames indicate a gradual scene change. Changing of these values sharply indicates abrupt scene change. Experimental results show that this method is effective for motion, abrupt and gradual shot transition detection. It achieves an F-measure exceeding 0.89 for gradual shot transition compared with 0.84 when using a PCA based method.

Keywords

scene change detection gradual transition abrupt transition image histogram correlation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guoping, Y., Lijuan, H.: Design and Implementation of the SIP Video Conferencing System in Public Security. In: IEEE International Conference on Multimedia Technology, ICMT (2010)Google Scholar
  2. 2.
    Rizzo, G., Meirone, B.: Distributed Semantic Video Tagging for Peer-to-Peer Authoring System. In: IEEE Workshop on Database and Expert Systems Applications, DEXA (September 2010)Google Scholar
  3. 3.
    Ma, L., Shen, H., Zhang, Q.: The Key Technologies for a Large-Scale Real-Time Interactive Video Distribution System. In: IEEE International Con-ference on Advanced Computer Control, ICACC (2010)Google Scholar
  4. 4.
    Semertzidis, T., Dimitropoulos, K., Koutsia, A., Grammalidis, N.: Video Sensor Network for Real-time Traffic Monitoring and Surveillance. In: IEEE International Conference on Intelligent Transport Systems, IET (2010)Google Scholar
  5. 5.
    Fernando, W.A.C., Canagarajah, C.N., Bull, D.R.: A Unified Approach to Scene Change Detection in Uncompressed and Compressed Video. IEEE Transaction on Consumer Electronics 46(3) (August 2000)Google Scholar
  6. 6.
    Adhikari, P., Gargote, N., Digge, J., Hogade, B.G.: Abrupt Scene Change Detection. World Academy of Science, Engineering and Technology (2008)Google Scholar
  7. 7.
    Zhang, H., Kankanhalli, A., Smoliar, S.: Automatic Partitioning of Full-motion Video. In: ACM/Springer Multimedia Systems, pp. 10–28 (July 1993)Google Scholar
  8. 8.
    Meng, J., Juan, Y., Chang, S.: Scene Change Detection in a MPEG Compressed Video Sequence. In: Proc. SPIE, vol. 2419, pp. 14–25 (1995)Google Scholar
  9. 9.
    Yeo, B., Liu, B.: Rapid Scene Analysis on Compressed Video. IEEE Transactions on Circuits and Systems for Video Technology 5, 533–544 (1995)CrossRefGoogle Scholar
  10. 10.
    Zabih, R., Miller, J., Mai, K.: A Feature-based Algorithm for Detecting and Classifying Scene Breaks. In: Proc. ACM Multimedia, San Francisco, pp. 189–200 (November 1995)Google Scholar
  11. 11.
    Qian, X., Liu, G.: Effective Fades and Flashlight Detection Based on Accumulating Histogram Difference. IEEE Transactions on Circuits and Systems for Video Technology 16(10), 1245–1258 (2006)CrossRefGoogle Scholar
  12. 12.
    Qi, Y., Hauptmann, A., Liu, T.: Supervised Classification for Video Shot Segmentation. In: Proc. IEEE Conf. on Multimedia Expo. (ICME), vol. 2, pp. 689–692 (2003)Google Scholar
  13. 13.
    Lee, M.-H., Yoo, H.-W., Jang, D.-S.: Video Scene Change Detection using Neural Network: Improved ART2. Expert Systems with Applications 31, 13–25 (2006)CrossRefGoogle Scholar
  14. 14.
    Zhu, Y., Zhou, D.: Scene Change Detection Based on Audio and Video Content Analysis. In: Proceedings of the Fifth International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2003), IEEE (2003)Google Scholar
  15. 15.
    Kyperountas, M., Kotropoulos, C., Pitas, I.: Enhanced Eigen-Audio frames for Audiovisual Scene Change Detection. IEEE Transactions on Multimedia 9(4) (June 2007)Google Scholar
  16. 16.
    Gao, L., Jiang, J., Liang, J., Wang, S., Yang, S., Qin, Y.: PCA-based Approach for Video Scene Change Detection on Compressed Video. IEEE Electronic Letters 42(24) (November 2006)Google Scholar
  17. 17.
    Li, Z., Liu, G.: A Novel Scene Change Detection Algorithm based on the 3D Wavelet Transform. In: IEEE International Conference on Image Processing, ICIP, pp. 1536–1539 (2008)Google Scholar
  18. 18.
    TREC Video Retrieval Evaluation (2005), http://www.nlpir.nist.gov/projects/trecvid/
  19. 19.
    Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using Matlab. Pearson Prentice Hall, New Jersey (2004)Google Scholar
  20. 20.
    The open Video Project, http://www.open-video.org

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Nisreen I. Radwan
    • 1
  • Nancy M. Salem
    • 2
  • Mohamed I. El Adawy
    • 2
  1. 1.National Research CentreCairoEgypt
  2. 2.Faculty of EngineeringHelwan UniversityCairoEgypt

Personalised recommendations