Advertisement

Selection of Views for Materializing in Data Warehouse Using MOSA and AMOSA

  • Rajib Goswami
  • D. K. Bhattacharyya
  • Malayananda Dutta
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 166)

Abstract

By saving or materializing a set of derived relations or intermediate results from base relations of a data warehouse, the query processing can be made more efficient. It avoids repeated generation of these temporary views while generating the query responses. But as in case of a data warehouse there may be large number of queries containing even larger number of views inside each query, it is not possible to save each and every query due to constraint of space and maintenance costs. Therefore, an optimum set of views are to be selected for materialization and hence there is the need of a good technique for selecting views for materialization. Several approaches have been made so far to achieve a good solution to this problem. In this paper an attempt has been made to solve this problem by using Multi Objective Simulated Annealing(MOSA) and Archived Multi-Objective Simulated Annealing(AMOSA) algorithm.

Keywords

Data Warehouse View Materialization View Selection Multi-Objective Optimization Simulated Annealing Multi-Objective Simulated Annealing (MOSA) Archived Multi-Objective Simulated Annealing (AMOSA) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gupta, A., Mumick, I.S.: Maintenance of Materialized Views: Problems, Techniques, and Applications. ACM (1999) ISBN:0-262-57122-6Google Scholar
  2. 2.
    Vijay Kumar, T.V., Aloke, G.: Greedy Selection of Materialized Views. Int. J. of Computer and Communication Technology 1(1), 47–58 (2009)Google Scholar
  3. 3.
    Harinarayan, V., Rajaraman, A., Ullman, J.: Implementing Data Cubes Efficiently. In: Proceedings of ACM SIGMOD International Conference on Management of Data (1996)Google Scholar
  4. 4.
    Gupta, H., Harinarayan, V., Rajaraman, A., Ullman, J.D.: Index Selection for OLAP. In: 13th ICDE Conference, pp. 208–219 (1997)Google Scholar
  5. 5.
    Derakhshan, R., Dehne, F., Korn, O., Stantic, B.: Simulated Annealing for Materialized View Selection in Data Warehousing Environment. In: Proceedings of the 24th IASTED International Conference on Database and Applications, pp. 89–94 (2006)Google Scholar
  6. 6.
    Derakhshan, R., Stantic, B., Korn, O., Dehne, F.: Parallel Simulated Annealing for Materialized View Selection in Data Warehousing Environments. In: Bourgeois, A.G., Zheng, S.Q. (eds.) ICA3PP 2008. LNCS, vol. 5022, pp. 121–132. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Gupta, H., Mumick, I.S.: Selection of Views to Materialize under a Maintenance Cost Constraint. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 453–470. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Gupta, H.: Selection and maintenance of views in a data warehouse. PhD thesis, Stanford University (1999)Google Scholar
  9. 9.
    Nadeua, T.P., Teorey, T.J.: Achieving Scalability in OLAP Materialized View Selection. In: DOLAP 2002, pp. 28–34. ACM (2002)Google Scholar
  10. 10.
    Agrawal, S., Chaudhuri, S., Narasayya, V.: Automated Selection of Materialized Views and Indexes for SQL Databases. In: 26th VLDB Conference, Cairo, Egypt (2000)Google Scholar
  11. 11.
    Chan, G.K.Y., Li, Q., Feng, L.: Optimized Design of Materialized Views in a Real-Life Data Warehousing Environment. International Journal of Information Technology 7(1), 30–54 (2001)Google Scholar
  12. 12.
    Horng, J.T., Chang, Y.J., Liu, B.J., Kao, C.Y.: Materialized View Selection Using Genetic Algorithms in a Data Warehouse System. In: IEEE CEC (1999)Google Scholar
  13. 13.
    Labrinidis, A., Roussopoulos, N.: Web View Materialization. In: ACM SIGMOD Conference, Dallas, Texas, USA, pp. 367–378 (2000)Google Scholar
  14. 14.
    Loureiro, J., Belo, O.: An Evolutionary Approach to the Selection and Allocation of Distributed Cubes. In: IEEE IDEAS 2006, pp. 243–248 (2006)Google Scholar
  15. 15.
    Saidi, S., Slimani, Y., Arour, K.: Web View Selection from User Access Patterns. In: PIKM 2007, Lisboa, Portugal, pp. 171–176 (2007)Google Scholar
  16. 16.
    Serna-Encinas, M.T., Hoya-Montano, J.A.: Algorithm for selection of materialized views: based on a costs model. In: Proceeding of Eighth International Conference on Current Trends in Computer Science, pp. 18–24 (2007)Google Scholar
  17. 17.
    Yang, J., Karlapalem, K., Li, Q.: Algorithm for Materialized View Design in Data Warehousing Environment. In: VLDB 1997, pp. 136–145 (1997)Google Scholar
  18. 18.
    Zhang, C., Yang, J.: Genetic Algorithm for Materialized View Selection in Data Warehouse Environments. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp. 116–125. Springer, Heidelberg (1999)Google Scholar
  19. 19.
    Zhang, C., Yao, X., Yang, J.: An Evolutionary Approach to Materialized Views Selection in a Data Warehouse Environment. IEEE Transactions on Systems and Cybernetics Part C: Applications and Reviews 31(3), 282–294 (2001)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Lee, M., Hammer, J.: Speeding up Materialized View Selection in Data Warehouses Using a Randomized Algorithm. Int. J. Cooperative Inform. Syst. 10, 327–353 (2001)CrossRefGoogle Scholar
  21. 21.
    Sun, X., Wang, Z.: An Efficient Materialized Views Selection Algorithm Based on PSO. In: Proc. International Workshop on Intelligent Systems and Applications (2009) Print ISBN: 978-1-4244-3893-8Google Scholar
  22. 22.
    Zhang, Q., Sun, X., Wang, Z.: An Efficient MA-Based Materialized Views Selection Algorithm. In: Proceedings of the 2009 IITA International Conference on Control, Automation and Systems Engineering, CASE 2009 (2009) ISBN: 978-0-7695-3728-3Google Scholar
  23. 23.
    Aouiche, K., Jouve, P.-E., Darmont, J.: Clustering-Based Materialized View Selection in Data Warehouses. In: Manolopoulos, Y., Pokorný, J., Sellis, T.K. (eds.) ADBIS 2006. LNCS, vol. 4152, pp. 81–95. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Aouiche, K., Darmont, J.: Data mining-based materialized view and index selection in data warehouses. Journal of Intelligent Information System 33, 65–93 (2009)CrossRefGoogle Scholar
  25. 25.
    Das, A., Bhattacharyya, D.K.: Density-Based View Materialization. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 589–594. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Davoud, S., Ellips, M.: Particle Swarm Optimization Methods, Taxonomy and Applications. International Journal of Computer Theory and Engineering 1(5), 486–502 (2009)Google Scholar
  27. 27.
    Smith, K.I., Everson, R.M., Fieldsend, J.E., Murphy, C., Misra, R.: Dominance-Based Multiobjective Simulated Annealing. IEEE Transactions on Evolutionary Computation 12(3), 323–342 (2008)CrossRefGoogle Scholar
  28. 28.
    Smith, K., Everson, R., Fieldsend, J.: Dominance measures for multi-objective simulated annealing. In: Proc. 2004 IEEE Congr. Evol. Comput., pp. 23–30 (2004)Google Scholar
  29. 29.
    Bandyopadhyay, S., Saha, S., Maulik, U., Deb, K.: A Simulated Annealing Based Multiobjective Optimization Algorithm: AMOSA. IEEE Transactions on Evolutionary Computation 12(3), 269–283 (2008)CrossRefGoogle Scholar
  30. 30.
    Transaction Processing Performance Council: in TPC BenchmarkTM (Decision Support), Standard Specification Revision 2.14.2, http://www.tpc.org/tpch/ (accessed July 20, 2011)

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Rajib Goswami
    • 1
  • D. K. Bhattacharyya
    • 1
  • Malayananda Dutta
    • 1
  1. 1.Department of Computer Science & EngineeringTezpur UniversityTezpurIndia

Personalised recommendations