Implementation of New Biorthogonal IOFDM

  • A. V. Meenakshi
  • R. Kayalvizhi
  • S. Asha
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 166)


Proposed biorthogonal interleaved OFDM system is used in Multiuser and multicarrier technique that has been recognized as an excellent method for high speed bi directional wireless mobile communication. In conventional interleaved OFDM system, convolution encoder is used as the channel encoder, but it leads to Bandwidth inefficiency and also reduces the throughput of the transmission and reception. The proposed bi orthogonal interleaved OFDM system is having the baud rate of 9600 kbps. This system is ultimately designed for the Bandwidth optimization and also it supports the Multi user transmission and reception of interleaved OFDM system.


Biorthogonal modulation Gold sequence generator QPSK QAM IOFDM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Damen, M.O., Chkeif, A., Belfiore, J.C.: Lattice code decoder for space-time codes. IEEE Commun. Lett. 4, 161–163 (2000)CrossRefGoogle Scholar
  2. 2.
    Wang, J.-T.: Signal Detection for the STFC-OFDM System over Time Selective Fading Channels. IEEE, Zhang, Y., Wang, J., Song, J., Yang, Z.-X. Google Scholar
  3. 3.
    Wang, J.-T., Yang, Z.-X., et al.: Design of space-time-frequency transmitter diversity scheme for TDS-OFDM system. IEEE Trans. Consumer Electronics 51(3), 759–764 (2005)CrossRefGoogle Scholar
  4. 4.
    Lee, K.F., Williams, D.B.: A space-time coded transmitter diversity technique for frequency selective fading channels. In: Proc. IEEE Sensor Array and Multichannel Signal Processing Workshop, Cambridge, MA, pp. 149–152 (March 2000)Google Scholar
  5. 5.
    Stuber, G., Barry, J., Mclaughlin, S.W., Li, Y., Ingram, M.A., Pratt, T.G.: Broadband MIMO-OFDM wireless communications. Proc. of the IEEE 92, 271–294 (2004)CrossRefGoogle Scholar
  6. 6.
    Tarokh, V., Jafarkhani, H., Calderbank, A.R.: Space-time block coding for wireless communications: performance results. IEEE J. Select Areas in Communications 17(3), 451–460 (1999)CrossRefGoogle Scholar
  7. 7.
    Viterbo, E., Boutros, J.: A universal lattice code decoder for fading channels. IEEE Trans. Inform. Theory 45, 1639–1642 (1999)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Gong, Y., Letaief, K.B.: Space-Frequency-Time Coded OFDM for Broadband Wireless Communications. IEEE Trans. Center for Wireless Information Technology Dept. of Electrical & Electronic Engineering Hong Kong Univ. of Science & Tech.Google Scholar
  9. 9.
    Zheng, F.C., Burr, A.G.: Signal detection for orthogonal spacetime block coding over time-selective fading channels: a PIC approach for the i g systems. IEEE Trans. Commun. 53(6), 969–972 (2005)CrossRefGoogle Scholar
  10. 10.
    Keller, T., Hanzo, L.: Adaptive Multicarrier Modulation: A Convenient Framework for Time-Frequency Processing in Wireless Communications. IEEE Proceedings of the IEEE 88, 609–640 (2000)CrossRefGoogle Scholar
  11. 11.
    Wang, Z., Giannakis, G.B.: Wireless Multicarrier Communications. IEEE Signal Processing Magazine, 29–48 (May 2000)Google Scholar
  12. 12.
    Bingham, J.A.C.: Multicarrier Modulation for Data Transmission: An Idea Whose Time Has Come. IEEE Communications Magazine, 5–14 (May 1990)Google Scholar
  13. 13.
    Naguib, A.F., Seshadri, N., Calderbank, A.R.: Increasing Data Rate over Wireless Channels. IEEE Signal Processing Magazine, 76–92 (May 2000)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Periyar Maniammai UniversityThanjaurIndia

Personalised recommendations