Can Ear and Soft-Biometric Traits Assist in Recognition of Newborn?

  • Shrikant Tiwari
  • Aruni Singh
  • Sanjay Kumar Singh
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 166)


Missing, swapping, mixing, and illegal adoption of newborns is a global challenge and research done to solve this issue is minimal and least reported in the literature. Most of the biometric systems developed are for adults and very few of them address the issue of newborn identification.The ear of newborn is a perfect source of data for passive identification of newborn as they are the highly non cooperative users of biometrics. The four characteristics of ear biometrics: universality, uniqueness, permanence and collectability make it a very potential biometric trait for the identification of newborn. Further the use of soft-biometric data like gender, blood group, height and weight along with ear enhances the accuracy for identification of newborn. The objective of this paper is to demonstrate the concept of using ear and soft-biometrics recognition for identification of newborn. The main contribution of the research are (a) the preparation of ear and soft biometric database of newborn. (b)Fusion of ear and soft-biometrics data for identification of 210 newborn, results in an improvement of approximately 5.59% over the primary biometric system i.e. ear.


Ear Soft-biometric Newborn Recognition Fusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. (last accessed on May 25, 2011)
  2. 2.
  3. 3.
    Gray, J.E., Suresh, G., Ursprung, R., Edwards, W.H., Nickerson, J., Shinno, P.H.: Patient Misidentification in the neonatal intensive care unit: Quantification of ris. Paediatrics 117, e46–e47 (2006)CrossRefGoogle Scholar
  4. 4.
    Stapleton, M.E.: Best foot forward: Infant footprints for personal identification. Law Enforcement Bulletin 63, FBI (1999)Google Scholar
  5. 5.
    Shepard, K.S., Erickson, T., Fromm, H.: Limitations of footprinting as a means of infant identification. Pediatrics 37(1) (1996)Google Scholar
  6. 6.
    Thompson, J.E., Clark, D.A., Salisbury, B., Cahill, J.: Footprinting the infant: not cost-effective. Journal of Pediatrics, 797–798 (1981)Google Scholar
  7. 7.
    Pela, N.T.R., Mamede, M.V., Tavares, M.S.G.: Analise crıtica de impressoes plantares de recem-nascidos. Revista Brasileira de Enfermagem, 100–105 (1975)Google Scholar
  8. 8.
    Galton, F.: Finger prints of young children. British Association for the Advancement of Science (1989)Google Scholar
  9. 9.
    Weingaertner, D., Bellon, O.R.P., Cat, M.N.L., Silva, L.: Infant’s biometric identification: Can it be done? In: International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (2008)Google Scholar
  10. 10.
    Fields, C., Hugh, C.F., Warren, C.P., Zimberoff, M.: The ear of the infant as an identification constant. Journal of Obstetrics and Gynecology 16, 98–101 (1960)Google Scholar
  11. 11.
    Li, S.Z., Jain, A.K.: Handbook of Face Recognition. Springer, New York (2004)Google Scholar
  12. 12.
    Daugman, J.: New methods in iris recognition. IEEE Transactions on Systems, Man and Cybernetics B 37(5), 1167–1175 (2007)CrossRefGoogle Scholar
  13. 13.
    Bharadwaj, S., Bhatt, H.S., Singh, R., Vatsa, M., Singh, S.K.: Face Recognition for Infants: A Preliminary Study. In: Fourth IEEE International Conference on Biometrics, Theory Applications and Systems (BTAS), pp. 1–6, 27–29 (2010)Google Scholar
  14. 14.
    Lemes, R.P., Bellon, O.R.P., Silva, L., Jain, A.K.: Biometric Recognition of Newborns: Identification using Palmprints. In: International Joint Conference on Biometrics, Washington DC, USA, October 11-13 (2011)Google Scholar
  15. 15.
    Kuefner, D., Cassia, V.M., Picozzi, M., Bricolo, E.: Do all kids look alike? evidence for another-age effect in adults. Journal of Experimental Psychology: Human Perception and Performance 34(4), 811–817 (2008)Google Scholar
  16. 16.
    Lomuto, C., Duverges, C.: Identificacion delrecien nacidoy medidas de prevencion para evitar surobo delas maternidades. Revista del Hospital Materno Infantil Ramon Sarda 14(3), 115–124 (1995)Google Scholar
  17. 17.
    Iannarelli, A.: Ear Identification. Paramont Publishing Company (1989)Google Scholar
  18. 18.
    Pun, K.H., Moon, Y.S.: Recent advances in ear biometrics. In: Proceedings of the Sixth International Conference on Automatic Face and Gesture Recognition, pp. 164–169 (2004)Google Scholar
  19. 19.
    Yuizono, T., Wang, Y., Satoh, K., Nakayama, S.: Study on individual recognition for ear images by using genetic local search. In: Proceedings of the 2002 Congress on Evolutionary Computation, pp. 237–242 (2002)Google Scholar
  20. 20.
    Burge, M., Burger, W.: Ear biometrics in Computer Vision. In: International Conference of Pattern Recognition, pp. 822–826 (2000)Google Scholar
  21. 21.
    Ross, A., Nandakumar, K., Jain, A.K.: Handbook of Multibiometrics. Springer, New York (2006)Google Scholar
  22. 22.
    Jain, A.K., Dass, S.C., Nandakumar, K.: Can soft biometric traits assist user recognition? In: Proceedings of SPIE International Symposium on Defense and Security: Biometric Technology for Human Identification (2004)Google Scholar
  23. 23.
    Gutta, S., Huang, J.R.J., Jonathon, P., Wechsler, H.: Mixture of Experts for Classification of Gender, Ethnic Origin, and Pose of Human Faces. IEEE Transactions on Neural Networks 11, 948–960 (2000)CrossRefGoogle Scholar
  24. 24.
    Jain, A.K., Dass, S.C., Nandakumar, K.: Soft Biometric Traits for Personal Recognition Systems. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 731–738. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Jain, A.K., Nandakumar, K., Lu, X., Park, U.: Integrating Faces, Fingerprints, and Soft Biometric Traits for User Recognition. In: Maltoni, D., Jain, A.K. (eds.) BioAW 2004. LNCS, vol. 3087, pp. 259–269. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Jain, A.K., Lu, X.: Ethnicity Identification from Face Image. In: Proceedings of SPIE International Symposium on Defense and Security: Biometric Technology for Human Identification (2004)Google Scholar
  27. 27.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley & Sons (2001)Google Scholar
  28. 28.
    Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)CrossRefGoogle Scholar
  29. 29.
    Song, Y.-J., Kim, Y.-G., Kim, N., Ahn, J.-H.: Face Recognition using both Geometric Features and PCA/LDA. In: Sixth International Conference on Advanced Language Processing and Web Information TechnologyGoogle Scholar
  30. 30.
    Ping, Y., Bowyer, K.W.: Empirical Evaluation of Advanced Ear Biometrics. In: Proc. Empirical Evaluation Methods in Computer Vision, San Diego, pp. 56–59 (2005)Google Scholar
  31. 31.
    Li, Y.: Study on Some Key Issues in Ear Recognition. PhD thesis, University of Science and Technology Beijing, Beijing (2006)Google Scholar
  32. 32.
    Kurita, T., Taguchi, T.: A Modification of Kernel-based Fisher Discriminant Analysis for Face DetectionGoogle Scholar
  33. 33.
    Liu, W., Wang, Y., Li, S.Z., Tan, T.: Null Space Approach of Fisher Discriminant Analysis for Face Recognitio. In: Proceeding of ECCV Workshop on Biometric Authentication, pp. 32–44 (2004)Google Scholar
  34. 34.
    Chen, L.F., Mark Liao, H.Y., Ko, M.T., Yu, G.J.: A New LDA-based Face Recognition System Which Can Solve the Small Size Problem. Pattern Recognition 33(10), 1713–1726 (2000)CrossRefGoogle Scholar
  35. 35.
    Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face recognition by independent component analysis. IEEE Transactions on Neural Networks 13(6), 1450–1464 (2002)CrossRefGoogle Scholar
  36. 36.
    Nanni, L., Lumini, A.: A multi-matcher for ear authentication. Pattern Recognit. Lett. 28(16), 2219–2226 (2007)CrossRefGoogle Scholar
  37. 37.
    Choras, M.: Ear biometrics based on geometrical features extraction. Electron. Lett. Comput. Vis. Image Anal. 5(3), 84–95 (2005)Google Scholar
  38. 38.
    Choraś, M., Choraś, R.S.: Geometrical Algorithms of Ear Contour Shape Representation and Feature Extraction. In: Proc. of Intelligent Systems Design and Applications (ISDA), Jinan, China, vol. II, pp. 451–456. IEEE CS Press (2006)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Shrikant Tiwari
    • 1
  • Aruni Singh
    • 1
  • Sanjay Kumar Singh
    • 1
  1. 1.Department of Computer Engineering, Institute of TechnologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations