Image Analysis of DETECHIP® – A Molecular Sensing Array

  • Marcus Lyon
  • Mark V. Wilson
  • Kerry A. Rouhier
  • David J. Symonsbergen
  • Kiran Bastola
  • Ishwor Thapa
  • Andrea E. Holmes
  • Sharmin M. Sikich
  • Abby Jackson
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 166)


Several image analysis techniques were applied to a colorimetric chemical sensor array called DETECHIP®. Analytes such as illegal and over the counter drugs can be detected and identified by digital image analysis. Jpeg images of DETECHIP® arrays with and without analytes were obtained using a camera and a simple flatbed scanner. Color information was obtained by measuring red-green-blue (RGB) values with image software like GIMP, Photoshop, and ImageJ. Several image analysis methods were evaluated for analysis of both photographs and scanned images of DETECHIP®. We determined that when compared to photographs, scanned images of DETECHIP® gave better results through the elimination of parallax and shading that lead to inconsistent results. Furthermore, results using an ImageJ macro technique showed improved consistency versus the previous method when human eyesight was used as a detection method.


DETECHIP Molecular Sensing Array Color Signal Detection of Narcotics Cutting Agents Image Analysis RGB GIMP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burks, R.M., Pacquette, S.E., Guericke, M.A., Wilson, M.V., Sy-monsbergen, D.J., Lucas, K.A., Holmes, A.E.: Detechipr: A sensor for drugs of abuse. Journal of Forensic Science 55(3), 723–727 (2010)CrossRefGoogle Scholar
  2. 2.
    Holmes, A.E.: Detechip: Molecular color and fluorescent sensory arrays for small molecules. United States Patent US2010/0197516 (2009)Google Scholar
  3. 3.
    Unidc, P. (ed.): Rapid testing methods of drugs of abuse. United Nations, New York (1994)Google Scholar
  4. 4.
    O’Neal, C.L., Crouch, D.J., Fatah, A.A.: Validation of twelve chemical spot tests for the detection of drugs of abuse. Forensic Science International 108(1), 189–201 (2000)CrossRefGoogle Scholar
  5. 5.
    Morris, J.A.: Modified bobalt thiocyanate presumptive color test for ketamine hydrochloride. Journal of Forensic Science 52(1), 84–87 (2007)CrossRefGoogle Scholar
  6. 6.
    Justice, U.S.D.O. (ed.): Color test reagents/kits for preliminary identification of drugs of abuse, Washington, D.C (July 2000)Google Scholar
  7. 7.
    ElSohly, M.A., Salamore, S.J.: Prevalence of drugs used in cases of alleged sexual assault. Journal of Analytical Toxicology 23, 141–146 (1999)CrossRefGoogle Scholar
  8. 8.
    Kollroser, M., Schober, C.: Simultaneous analysis of flunitrazepam and its major metabolites in muman plasma by high performance liquid chromatography tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Assays 28, 1173–1182 (2002)CrossRefGoogle Scholar
  9. 9.
    Huang, Q., He, X., Ma, C., Liu, R., Yu, S., Dayer, C.A., Wenger, G.R., McKernam, R., Cook, J.M.: Pharmacophore/receptor models for gabaa/bzr subtypes (α1β3γ2, α5β3γ2, and α6β3γ2) via a comprehensive ligand-mapping approach. Journal of Medicinal Chemistry 42(1), 71–95 (2000)CrossRefGoogle Scholar
  10. 10.
    Negrusz, A., Moore, C., Deitermann, D., Lewis, D., Kaleciak, K., Kron-strand, R., Feeley, B., Niedbala, R.S.: Highly sensitive micro-plate enzyme immunoassay screening and nci-gc-ms confirmation of flunitrazepam and its major metabolite 7-aminoflunitrazepam in hair. Journal of Analytical Toxicology 23(6), 429–435 (1999)CrossRefGoogle Scholar
  11. 11.
    Sure Screen Diagnostics, Ltd., U.K (2011)Google Scholar
  12. 12.
    Lyon, M.: Detechipr: An improved molecular sensing array. Journal of Forensic Research 2(4), 1–7 (2011)CrossRefGoogle Scholar
  13. 13.
    Liang, K., Li, W., Ren, H.R., Liu, X.L., Wang, W.J., Yang, R., Han, D.J.: Color measurements for rgb white leds in solid-state lighting using a bdj photodetector. Displays 30(3), 107–113 (2009)CrossRefGoogle Scholar
  14. 14.
    Lim, S.H., Musto, C.J., Park, E., Zhong, W., Suslick, K.S.: A colorimetric sensory array for detection and identification of sugars. Organic Letters 10(20), 4405–4408 (2008)CrossRefGoogle Scholar
  15. 15.
    Lin, H., Suslick, K.S.: A colorimetric sensory array for detection of triacetone triperoxide vapor. Journal of American Chemical Society 132(44), 15519–15521 (2010)CrossRefGoogle Scholar
  16. 16.
    Soldat, D.J., Barak, P., Lepore, B.J.: Microscale colorimetric analysis: Using a desktop scanner and automated digital image analysis. Journal of Chemical Education 86(5), 617–620 (2009)CrossRefGoogle Scholar
  17. 17.
    Steiner, M.-S., Meier, R.J., Duerkop, A., Wolfbeis, O.S.: Chromogenic sensing of biogenic amines using a chameleon probe and the red-green-blue readout of digital camera images. Analytical Chemistry 82(1), 8402–8405 (2010)CrossRefGoogle Scholar
  18. 18.
    Valverde, J., This, H.: Quatitative determination of photosynthetic pigments in green beans using thin-layer chromatography and a flatbed scanner as a densitometer. Journal of Chemical Education 84(1), 1505–1507 (2007)CrossRefGoogle Scholar
  19. 19.
    Feng, L., Musto, C.J., Kemling, J.W., Lim, S.H., Suslick, K.S.: A colorimetric sensor array for identification of toxic gases below permissible exposure limits. Chemical Communications 46(1), 2037–2039 (2010)CrossRefGoogle Scholar
  20. 20.
    Feng, L., Musto, C.J., Suslick, K.S.: A simple and highly sensitive colorimetric detection method for gaseous formaldehyde. Journal of American Chemical Society 132, 4046–4047 (2010)CrossRefGoogle Scholar
  21. 21.
    Janzen, M.C., Ponder, J.B., Bailey, D.P., Ingison, C.K., Suslick, K.S.: Colorimetric sensor arrays for volatile organic compounds. Analytical Chemistry 78(1), 3591–3600 (2006)CrossRefGoogle Scholar
  22. 22.
    Rakow, N.A., Suslick, K.S.: A colorimetric sensor array for odour visualization. Nature 406(1), 710–714 (2000)CrossRefGoogle Scholar
  23. 23.
    Imagej home page (June 2010),
  24. 24.
    Gimp home page (June 2010),
  25. 25.
    Peng, T.: Detect circles with various radii in grayscale image via hough transform. MATLAB Central (2005)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Marcus Lyon
    • 1
  • Mark V. Wilson
    • 1
  • Kerry A. Rouhier
    • 2
  • David J. Symonsbergen
    • 3
  • Kiran Bastola
    • 4
  • Ishwor Thapa
    • 4
  • Andrea E. Holmes
    • 1
  • Sharmin M. Sikich
    • 1
  • Abby Jackson
    • 1
  1. 1.Department of ChemistryDoane CollegeCreteUSA
  2. 2.Department of ChemistryKenyon CollegeGambierUSA
  3. 3.NOVEL Chemical SolutionsCreteUSA
  4. 4.School of Interdisciplinary InformaticsUniversity of Nebraska at OmahaOmahaUSA

Personalised recommendations