Skip to main content

Instability and Chaos in Various Laser Structures

  • Chapter
  • First Online:
Semiconductor Lasers

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 111))

  • 3144 Accesses

Abstract

Except for narrow-stripe edge-emitting semiconductor lasers, various types of laser structures have been proposed. They are proposed to compensate insufficient characteristics of narrow-stripe edge-emitting semiconductor lasers, however, those new types of devices intrinsically have unstable features even in their solitary oscillations. Also, the instability is greatly enhanced by the introduction of optical feedback and optical injection. We derive the rate equations for each semiconductor laser with a new structure and discuss its dynamic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acachihara H, Hess O, Abraham E (1993) Spatiotemporal chaos in broad-area semiconductor lasers. J Opt Soc Am B 10:658–665

    Article  ADS  Google Scholar 

  • Agrawal GP, Dutta NK (1993) Semiconductor lasers. Van Nostrand Reinhold, New York

    Google Scholar 

  • Ahamed M, Yamada M (2002) Influence of instantaneous mode competition on the dynamics of semiconductor lasers. IEEE J Quantum Electron 38:682–693

    Article  ADS  Google Scholar 

  • Altés JB, Gatare I, Panajotov K, Thienpont H, Sciamanna M (2006) Mapping of the dynamics induced by orthogonal optical injection in vertical-cavity surface-emitting lasers. IEEE J Quantum Electron 42:198–207

    Article  ADS  Google Scholar 

  • Aoyama H, Tomida S, Shogenji R, Ohtsubo J (2011) Chaos dynamics in vertical-cavity surface-emitting semiconductor lasers with polarization-selected optical feedback. Opt Commun 284:1405–1411

    Article  ADS  Google Scholar 

  • Arteaga MA, Unold HJ, Ostermann JM, Michalzik R, Thienpont H, Panajotov K (2006) Investigation of polarization properties of VCSELs subject to optical feedback from an extremely short external cavity—part II: experiments. IEEE J Quantum Electron 42:102–107

    Article  ADS  Google Scholar 

  • Asatuma T, Takiguchi Y, Frederico S, Furukawa A, Hirata S (2006) Successive phase change and stability of near-field patterns for broad-area laser diodes. SPIE Proc 6104:61040C

    Article  ADS  Google Scholar 

  • Barchanski A, Gensty T, Degen C, Fischer I, Elsäßer W (2003) Picosecond emission dynamics of vertical-cavity surface-emitting lasers: spatial, spectral, and polarization-resolved characterization. IEEE J Quantum Electron 39:850–858

    Article  ADS  Google Scholar 

  • Besnard P, Robert F, Charès ML, Stéphan GM (1997) Theoretical modeling of vertical-cavity surface-emitting lasers with polarized optical feedback. Phys Rev A 56:3191–3205

    Article  ADS  Google Scholar 

  • Besnard P, Charès ML, Stéphan G, Robert F (1999) Switching between polarized modes of a vertical-cavity surface-emitting laser by isotropic optical feedback. J Opt Soc Am B 16:1059–1064

    Article  ADS  Google Scholar 

  • Burkhard T, Ziegler MO, Fischer I, Elsäßer W (1999) Spatio-temporal dynamics of broad area semiconductor lasers and its characterization. Chaos, Solitons and Fractals 10:845–850

    Article  Google Scholar 

  • Carr TW, Erneux T (2001) Dimensionless rate equations and simple conditions for self-pulsing in laser diodes. IEEE J Quantum Electron 37:1171–1177

    Article  ADS  Google Scholar 

  • Danckaerta J, Naglera B, Alberta J, Panajotova K, Veretennicoff I, Erneux T (2002) Minimal rate equations describing polarization switching in vertical-cavity surface-emitting lasers. Opt Commun 201:129–137

    Article  ADS  Google Scholar 

  • Degen C, Fischer I, Elsäßer W (1999) Transverse modes in oxide confined VCSELs: influence of pump profile, spatial hole burning, and thermal effects. Opt Express 5:38–47

    Article  ADS  Google Scholar 

  • Diehl R (2000) High-power diode laser, fundamentals, technology, applications. Springer-Verlarg, Berlin

    Book  Google Scholar 

  • Donovan K, Harrison P, Kelsall RW (2001) Self-consistent solutions to the intersubband rate equations in quantum cascade lasers: analysis of a GaAs/Al\(_{x}\)Ga\(_{1-x}\)As device. J Appl Phys 89:3084–3090

    Article  ADS  Google Scholar 

  • Erneux T, Viktorov EA, Mandel P (2007) Time scales and relaxation dynamics in quantum-dot lasers. Phys Rev A 76:023819-1–7

    Google Scholar 

  • Erneux T, Viktorov EA, Kelleher B, Goulding D, Hegarty SP, Huyet G (2010) Optically injected quantum-dot lasers. Opt Lett 35: 937–939

    Article  ADS  Google Scholar 

  • Faist J, Capasso F, Sivco DL, Sirtori C, Hutchinson AL, Cho AY (1994) Quantum cascade laser. Science 264:553–556

    Article  ADS  Google Scholar 

  • Fischer I, Hess O, Elsäßer W, Göbel E (1996) Complex spatio-temporal dynamics in the near-field of broad-area semiconductor laser. EuroPhys Lett 35:579–584

    Article  ADS  Google Scholar 

  • Fujiwara N, Ohtsubo J (2004) Synchronization in chaotic vertical-cavity surface-emitting semiconductor lasers. SPIE Proc 5349:282–289

    Article  ADS  Google Scholar 

  • Fujiwara N, Takiguchi Y, Ohtsubo J (2003) Observation of low-frequency fluctuations in vertical-cavity surface-emitting lasers. Opt Lett 28:896–898

    Article  ADS  Google Scholar 

  • Fukushima T (2000) Analysis of resonator eigenmodes in symmetric quasistadium laser laser diodes. J Lightwave Technol 18:2208–2216

    Article  ADS  Google Scholar 

  • Fukushima T, Miyazaki H, Ando T, Tanaka T, Sakamoto T (2002) Nonlinear dynamics in directly modulated self-pulsating laser diodes with a highly doped saturable absorption layer. Jpn J Appl Phys 41 Part 1:117–124

    Google Scholar 

  • Gaciu N, Gehrig E, Hess O (2007) Control of broad-area laser dynamics with delayed optical feedback. In: Schöll E, Schuster G (eds) Handbook of chaos control, Chap. 22. Wiley-VCH, Weinheim

    Google Scholar 

  • Gatare I, Sciamanna M, Buesa J, Thienpont H, Panajotov K (2006) Nonlinear dynamics accompanying polarization switching in vertical-cavity surface-emitting lasers with orthogonal optical injection. Appl Phys Lett 88:101106-1–3

    Google Scholar 

  • Gehrig E, Hess O (2003) Spatio-temporal dynamics and quantum fluctuations in semiconductor lasers. Springer-Verlag, Heidelberg

    Book  Google Scholar 

  • Gensty T, Elsäßer W (2005) Semiclassical model for the relative intensity noise of intersubband quantum cascade lasers. Opt Commun 256:171–183

    Article  ADS  Google Scholar 

  • Giudici M, Balle S, Ackemann T, Barland S, Tredicce JR (1999) Polarization dynamics in vertical-cavity surface-emitting lasers with optical feedback: experiment and model. J Opt Soc Am B 16:2114–2123

    Article  ADS  Google Scholar 

  • Gmachl C, Capasso F, Sivco DL, Cho AY (2001) Recent progress in quantum cascade lasers and applications. Rep Prog Phys 64:1533–1601

    Article  ADS  Google Scholar 

  • Goulding D, Hegarty SP, Rasskazov O, Melnik S, Hartnett M, Greene G, McInerney JG, Rachinskii D, Huyet1 G (2007) Excitability in a quantum dot semiconductor laser with optical injection. Phys Rev Lett 98:153903-1–4

    Google Scholar 

  • Green RP, Xu JH, Mahler L, Tredicucci A, Beltram F, Giuliani G, Beere HE, Ritchie DA (2008) Linewidth enhancement factor of terahertz quantum cascade lasers. Appl Phys Lett 92:071106-1–071106-3

    Google Scholar 

  • Grillot F, Veselinov K, Gioannini M, Montrosset I, Even J, Piron R, Homeyer E, Loualiche S (2009) Spectral analysis of 1.55-\(\mu \)m InAs-InP(113)B quantum-dot lasers based on a multipopulation rate equations model. IEEE J Quantum Electron 45:872–878

    Google Scholar 

  • Haldar MK (2005) A simplified analysis of direct intensity modulation of quantum cascade lasers. IEEE J Quantum Electron 41:1349–1355

    Article  ADS  Google Scholar 

  • Hess O, Kuhn T (1996a) Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers I theoretical formulation. Phys Rev A 54:3347–3359

    Article  ADS  Google Scholar 

  • Hess O, Kuhn T (1996b) Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers II spatiotemporal dynamics. Phys Rev A 54:3360–3368

    Article  ADS  Google Scholar 

  • Hess O, Koch SW, Moloney JV (1995) Filamentation and beam propagation in broad-area semiconductor lasers. IEEE J Quantum Electron 31:35–43

    Article  ADS  Google Scholar 

  • Hodgson N, Weber H (1997) Optical resonators. Springer, London

    Google Scholar 

  • Hong Y, Spencer PS, Shore KA (2004) Suppression of polarization switching in vertical-cavity surface-emitting lasers by use of optical feedback. Opt Lett 29:2151–2153

    Article  ADS  Google Scholar 

  • Hong Y, Ju R, Spencer PS, Shore KA (2005) Investigation of polarization bistability in vertical-cavity surface-emitting laser subjected to optical feedback. IEEE J Quantum Electron 41:619–624

    Article  ADS  Google Scholar 

  • Hugi A, Maulini R, Faist J (2010) External cavity quantum cascade laser. Semicond Sci Technol 25:083001-1–14

    Google Scholar 

  • Hülsewede R, Sebastian J, Wenzel H, Beister G, Kanauer A, Erbert G (2001) Beam quality of high power 800 nm broad-area laser diodes with 1 and 2 mm large optical cavity structure. Opt Commun 192:69–75

    Article  ADS  Google Scholar 

  • Hurtado A, Quirce A, Valle A, Pesquera L, Adams MJ (2010) Nonlinear dynamics induced by parallel and orthogonal optical injection in 1550 nm vertical-cavity surface-emitting lasers (VCSELs). Opt Express 18:9423–9428

    Article  ADS  Google Scholar 

  • Huyet G, O’Brien D, Hegarty SP, McInerney JG, Uskov AV, Bimberg D, Ribbat C, Ustinov VM, Zhukov AE, Mikhrin SS, Kovsh AR, White JK, Hinzer K, SpringThorpe AJ (2004) Quantum dot semiconductor lasers with optical feedback. Phys Stat Sol (a) 201:345–352

    Article  ADS  Google Scholar 

  • Ikuma Y, Ohtsubo J (1998) Dynamics in a compound cavity semiconductor laser induced by small external-cavity-length change. IEEE J Quantum Electron 34:1240–1246

    Article  ADS  Google Scholar 

  • Jiang S, Pan Z, Dagenais M, Morgan RA, Kojima K (1993) High-frequency polarization self-modulation in vertical-cavity surface-emitting lasers. Appl Phys Lett 63:3545–3547

    Article  ADS  Google Scholar 

  • Jones RJ, Rees P, Spencer PS, Shore KA (2001) Chaos and synchronization of self-pulsating laser diodes. J Opt Soc Am B 18:166–172

    Article  ADS  Google Scholar 

  • Juang C, Chen MR, Juang J (1999) Nonlinear dynamics of self-pulsating laser diodes under external drive. Opt Lett 24:1346–1348

    Article  ADS  Google Scholar 

  • Juang C, Hwang TM, Juang J, Lin WW (2000) A synchronization scheme using self-pulsating laser diodes in optical chaotic communication. IEEE J Quantum Electron 36:300–304

    Article  ADS  Google Scholar 

  • Kuznetsov M, Tsang DZ, Walpole JN, Liau ZL, Ippen EP (1986) Chaotic pulsation of semiconductor lasers with proton-bombarded segment. In: Boyd RW, Raymer MG, Narducci LM (eds) Optical instabilities, Vol. 4. Cambridge University Press, Cambridge

    Google Scholar 

  • Law JY, Agrawal GP (1997a) Effects of spatial hole burning on gain switching in vertical-cavity surface-emitting lasers. IEEE J Quantum Electron 33:462–468

    Article  ADS  Google Scholar 

  • Law JY, Agrawal GP (1997b) Mode-partition noise in vertical-cavity surface-emitting lasers. IEEE Photon Technol Lett 9:437–439

    Article  ADS  Google Scholar 

  • Law JY, Agrawal GP (1998) Feedback-induced chaos and intensity-noise enhancement in vertical-cavity surface-emitting lasers. J Opt Soc Am B 15:562–569

    Article  ADS  Google Scholar 

  • Levy G, Hardy AA (1997) Chaotic effects in flared lasers: a numerical analysis. IEEE J Quantum Electron 33:26–32

    Article  ADS  Google Scholar 

  • Li H, Iga K (2002) Vertical-cavity surface-emitting laser devices. Springer, Berlin

    Google Scholar 

  • Li H, Lucas TL, McInerney JG, Wright MW, Morgan RA (1996) Injection locking dynamics of vertical cavity semiconductor lasers using conventional and phase conjugate injection. IEEE J Quantum Electron 32:22–235

    Article  MATH  Google Scholar 

  • Lim YL, Dean P, Nikolić M, Kliese R, Khanna SP, Lachab M, Valavanis A, Indjin D, Ikonić Z, Harrison P, Linfield EH, Davies AG, Wilson SJ, Rakić AD (2011) Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers. Appl Phys Lett 99:081108-1–3

    Google Scholar 

  • Lüdge K (2011) Modeling quantum dot based laser devices. In: Lüdge K (ed) Nonlinear laser dynamics, Chap. 1. Wiley-VCH, Weinheim

    Google Scholar 

  • Lüdge K, Schöll E (2009) Quantum-dot lasers-desynchronized nonlinear dynamics of electrons and holes. IEEE J Quantum Electron 45:1396–1401

    Article  Google Scholar 

  • Lüdge K, Bormann MJP, Malić E, Hövel P, Kuntz M, Bimberg D, Knorr A, Schöll E (2008) Turn-on dynamics and modulation response in semiconductor quantum dot lasers. Phys Rev B 78:035316-1–11

    Google Scholar 

  • Lüdge K, Aust R, Fiol G, Stubenrauch M, Arsenijević D, Bimberg D, Schöll E (2010) Large-signal response of semiconductor quantum-dot lasers. IEEE J Quantum Electron 46:1755–1762

    Article  ADS  Google Scholar 

  • Luo GP, Peng C, Le HQ, Pei SS, Hwang WY, Ishaug B, Um J, Baillargeon JN, Lin CH (2001) Grating-tuned external-cavity quantum-cascade semiconductor lasers. Appl Phys Lett 78:2834–2836

    Article  ADS  Google Scholar 

  • Marciante JR, Agrawal GP (1998) Spatio-temporal characteristics of filamentation in broad-area semiconductor lasers: experimental results. IEEE Photon Technol Lett 10:54–56

    Article  ADS  Google Scholar 

  • Martín-Regalado J, van Tartwijk GHM, Balle S (1996a) Mode control and pattern stabilization in broad-area lasers by optical feedback. Phys Rev A 54:5386–5393

    Article  ADS  Google Scholar 

  • Martín-Regaldo J, Balle S, Abraham NB (1996b) Modeling spatio-temporal dynamics of gain-guided multistripe and broad-area lasers. IEE Proc Optoelectron 143:17–23

    Article  Google Scholar 

  • Martín-Regalado J, Prati JF, Abraham NB (1997) Polarization properties of vertical-cavity surface-emitting lasers. IEEE J Quantum Electron 33:765–783

    Article  ADS  Google Scholar 

  • Masoller C, Abraham NB (1999a) Low-frequency fluctuations in vertical-cavity surface-emitting semiconductor lasers with optical feedback. Phys Rev A 59:3021–3031

    Article  ADS  Google Scholar 

  • Masoller C, Abraham NB (1999b) Polarization dynamics in vertical-cavity surface-emitting lasers with optical feedback through a quarter-wave plate. Appl Phys Lett 74:1078–1080

    Article  ADS  Google Scholar 

  • Masoller C, Torre MS, Mandel P (2006) Influence of the injection current sweep rate on the polarization switching of vertical-cavity surface-emitting lasers. J Appl Phys 99:026108-1–3

    Google Scholar 

  • Meng B, Wang QJ (2012) Theoretical investigation of injection-locked high modulation bandwidth quantum cascade lasers. Opt Express 20:1450–1464

    Article  ADS  Google Scholar 

  • Merbach D, Hess O, Herzel H, Schöll E (1995) Injection induced bifurcations of transverse spatiotemporal patterns in semiconductor arrays. Phys Rev E 52:1571–1578

    Article  ADS  Google Scholar 

  • Mirasso CR, van Tartwijk GHM, Hernández-García E, Lenstra D, Lynch S, Landais P, Phelan P, O’Gorman J, Elsäßer W (1999) Self-pulsating semiconductor lasers: theory and experiment. IEEE J Quantum Electron 35:764–770

    Article  ADS  Google Scholar 

  • Mulet J, Balle S (2002) Spatio-temporal modeling of the optical properties of VCSELs in the presence of polarization effects. IEEE J Quantum Electron 38:291–305

    Article  ADS  Google Scholar 

  • Münkel M, Kaiser F, Hess O (1996) Spatio-temporal dynamics of multi-stripe semiconductor lasers with delayed optical feedback. Phys Lett A 222:67–75

    Article  ADS  Google Scholar 

  • Naumenko AV, Loiko NA, Sondermann M, Ackemann T (2003) Description and analysis of low-frequency fluctuations in vertical-cavity surface-emitting lasers with isotropic optical feedback by a distant reflector. Phys Rev A 68:033805-1–16

    Google Scholar 

  • O’Brien D, Hegarty SP, Huyet G (2004) Sensitivity of quantum-dot semiconductor lasers to optical feedback. Opt Lett 29:1072–1074

    Article  ADS  Google Scholar 

  • Otto C, Lüdge K, Schöll E (2010) Modeling quantum dot lasers with optical feedback: sensitivity of bifurcation scenarios. Phys Stat Sol (b) 247:829–845

    Google Scholar 

  • Petermann K (1988) Laser diode modulation and noise. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Petitjean Y, Destic F, Mollier JC, Sirtori C (2011) Dynamic modeling of terahertz quantum cascade lasers. IEEE J Select Topics Quantum Electron 17:22–29

    Article  Google Scholar 

  • Rahman L, Winful H (1994) Nonlinear dynamics of semiconductor arrays: a mean field model. IEEE J Quantum Electron 30:1405–1406

    Article  ADS  Google Scholar 

  • Rana F, Ram RJ (2002) Current noise and photon noise in quantum cascade lasers. Phys Rev B 65:125313-1–26

    Google Scholar 

  • Ryan A, Agrawal GP, Gray GR, Gage EC (1994) Optical feedback-induced chaos and its control in multimode semiconductor lasers. IEEE J Quantum Electron 30:668–679

    Article  ADS  Google Scholar 

  • Ryvkinn BS, Panajotov K, Avrutin EA, Veretennicoff I, Thienpont H (2004) Optical-injection-induced polarization switching in polarization-bistable vertical-cavity surface-emitting lasers. J Appl Phys 96:6002–6007

    Article  ADS  Google Scholar 

  • San Miguel M, Feng Q, Moloney JV (1995) Light polarization dynamics in surface-emitting semiconductor lasers. Phys Rev A 52:1729–1740

    Article  ADS  Google Scholar 

  • Scalari G, Walther C, Fischer M, Terazzi R, Beere H, Ritchie D, Faist J (2009) THz and sub-THz quantum cascade lasers. Laser Photon Rev 3: 45–66

    Article  Google Scholar 

  • Scholz D, Braun H, Schwarz UT, Brüninghoff S, Queren D, Lell A, Strauss U (2008) Measurement and simulation of filamentation in (Al, In)GaN laser diodes. Opt Express 16:6846–6859

    Article  ADS  Google Scholar 

  • Sciamanna M, Panajotov K (2005) Two-mode injection locking in vertical-cavity surface-emitting lasers. Opt Lett 30:2903–2905

    Article  ADS  Google Scholar 

  • Sciamanna M, Panajotov K (2006) Route to polarization switching induced by optical injection in vertical-cavity surface-emitting lasers. Phys Rev A 73:023811-1–17

    Google Scholar 

  • Sciamanna M, Erneux T, Rogister F, Deparis O, Mégret P, Blondel M (2002a) Bifurcation bridges between external-cavity modes lead to polarization self-modulation in vertical-cavity surface-emitting lasers. Phys Rev A 65:041801-1–4

    Google Scholar 

  • Sciamanna M, Rogister F, Deparis O, Mégret P, Blondel M, Erneux T (2002b) Bifurcation to polarization self-modulation in vertical-cavity surface-emitting lasers. Opt Lett 27:261–263

    Article  ADS  Google Scholar 

  • Sciamanna M, Masoller C, Abraham NB, Rogister F, Mégret P, Blondel M (2003a) Different regimes of low-frequency fluctuations in vertical-cavity surface-emitting lasers. J Opt Soc Am B 20:37–39

    Article  ADS  Google Scholar 

  • Sciamanna M, Masoller C, Rogister F, Mégret P, Abraham NB, Blondel M (2003b) Fast pulsing dynamics of a vertical-cavity surface-emitting laser operating in the low-frequency fluctuation regime. Phys Rev A68:015805-1–4

    Google Scholar 

  • Sciamanna M, Valle A, Mégret P, Blondel M, Panajotov K (2003c) Nonlinear polarization dynamics in directly modulated vertical-cavity surface-emitting lasers. Phys Rev E 68:016207-1–4

    Google Scholar 

  • Shoji H, Nakata Y, Mukai K, Sugiyama Y, Sugawara M, Yokoyama N, Ishikawa H (1997) Lasing characteristics of self-formed quantum-dot lasers with multistacked dot layer. IEEE J Selct Topics Quantum Electron 3:188–195

    Article  Google Scholar 

  • Simmendinger C, Preißer D, Hess O (1999) Stabilization of chaotic spatiotemporal filamentation in large broad area lasers by spatially structured optical feedback. Opt Express 5:48–54

    Article  ADS  Google Scholar 

  • Sondermann M, Bohnet H, Ackemann T (2003) Low-frequency fluctuations and polarization dynamics in vertical-cavity surface-emitting lasers with isotropic feedback. Phys Rev A 67:021802-1–4

    Google Scholar 

  • Sugawara M (1999) Self-assembled InGaAs/GaAs quantum dots. Academic Press, San Diego

    Google Scholar 

  • Tabaka A, Peil M, Sciamanna M, Fischer I, Elsäßer W, Thienpont H, Veretennicoff I, Panajotov K (2006) Dynamics of vertical-cavity surface-emitting lasers in the short external cavity regime: pulse packages and polarization mode competition. Phys Rev A 73:013810-1–14

    Google Scholar 

  • Tachikawa T, Takimoto S, Shogenji R, Ohtsubo J (2010) Dynamics of broad-area semiconductor lasers with short optical feedback. IEEE J Quantum Electron 46:140–149

    Article  ADS  Google Scholar 

  • Takiguchi Y, Asatsuma T, Hirata S (2006) Effect of the threshold reduction on a catastrophic optical mirror damage in broad-area semiconductor lasers with optical feedback. SPIE Proc 6104:61040X

    Article  ADS  Google Scholar 

  • Takimoto S, Tachikawa T, Shogenji R, Ohtsubo J (2009) Control of spatio-temporal dynamics of broad-area semiconductor lasers by strong optical injection. IEEE Photon Technol Lett 21:1051–1053

    Article  Google Scholar 

  • Tang X, van der Ziel JP, Chang B, Johnson R, Tatum JA (1997) Observation of bistability in GaAs quantum-well vertical-cavity surface-emitting lasers. IEEE J Quantum Electron 33:927–932

    Article  ADS  Google Scholar 

  • Totschnig G, Winter F, Pustogov V, Faist J, Müller A (2002) Mid-infrared external-cavity quantum-cascade laser. Opt Lett 27:1788–1800

    Article  ADS  Google Scholar 

  • Tronciu VZ, Yamada M, Ohno T, Ito S, Kawakami T, Taneya M (2003) Self-pulsation in an InGaN laser—theory and experiment. IEEE J Quantum Electron 39:1509–1514

    Article  ADS  Google Scholar 

  • Valle A, Gatare I, Panajotov K, Sciamanna M (2007) Transverse mode switching and locking in vertical-cavity surface-emitting lasers subject to orthogonal optical injection. IEEE J Quantum Electron 43:322–333

    Article  ADS  Google Scholar 

  • Valle A, Sarma J, Shore KA (1995a) Spatial holeburning effects on the dynamics of vertical-cavity surface-emitting laser diodes. IEEE J Quantum Electron 31:1423–1431

    Article  ADS  Google Scholar 

  • Valle A, Sarma J, Shore KA (1995b) Dynamics of transverse competition in vertical cavity surface emitting laser diodes. Opt Commun 115:297–302

    Article  ADS  Google Scholar 

  • van Tartwijk GHM, San Miguel M (1996) Optical feedback on self-pulsating semiconductor lasers. IEEE J Quantum Electron 32:1191–1202

    Article  ADS  Google Scholar 

  • Viktorov EA, Mandel P, O’Driscoll I, Carroll O, Huyet G, Houlihan J, Tanguy Y (2006) Low-frequency fluctuations in two-state quantum dot lasers. Opt Lett 31:2302–2304

    Article  ADS  Google Scholar 

  • Von Lehmen AC, Florez LT, Stoffel NG (1991) Dynamics, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers. IEEE J Quantum Electron 27:1402–1409

    Article  ADS  Google Scholar 

  • von Staden J, Gensty T, Elsäßer W, Giuliani G, Mann C (2006) Measurements of the \(\alpha \) factor of a distributed-feedback quantum cascade laser by an optical feedback self-mixing technique. Opt Lett 31:2574–2576

    Article  ADS  Google Scholar 

  • Winful HG (1992) Instability threshold for an array of coupled semiconductor lasers. Phys Rev A 46:6093–6094

    Article  ADS  Google Scholar 

  • Winful HG, Chen YC, Liu JM (1986) Frequency locking, quasiperiodicity, and chaos in modulated self-pulsating semiconductor lasers. Appl Phys Lett 48:616–618

    Article  ADS  Google Scholar 

  • Winful HG, Rahman L (1990) Synchronized chaos and spatiotemporal chaos in arrays of coupled lasers. Phys Rev Lett 65:1575–1578

    Article  ADS  Google Scholar 

  • Wójcika AK, Belyanin A, Yu N, Diehl L, Capasso F (2010) Nonlinear coupling of transverse modes in quantum cascade lasers. Opt Eng 49:111114-1–10

    Google Scholar 

  • Wójcik AK, Yu N, Capasso F, Belyanin A (2011a) Nonlinear optical interactions of laser modes in quantum cascade lasers. J Modern Opt 58:727–742

    Article  ADS  MATH  Google Scholar 

  • Wójcika AK, Yu N, Diehl L, Capasso F, Belyanin A (2011b) Self-synchronization of laser modes and multistability in quantum cascade lasers. Phys Rev Lett 106:133902-1–4

    Google Scholar 

  • Yamada M (1993) A theoretical analysis of self-sustained pulsation phenomena in narrow-stripe semiconductor lasers. IEEE J Quantum Electron 29:1330–1336

    Article  ADS  Google Scholar 

  • Yamada M (1996) Theoretical analysis of noise-reduction effects in semiconductor lasers with help of self-sustained pulsation phenomena. J Appl Phys 79:61–71

    Article  ADS  Google Scholar 

  • Yamada M (1998a) Computer simulation of feedback induced noise in semiconductor lasers operating with self-sustained pulsation. IEICE Trans Electron E81-C:768–780

    Google Scholar 

  • Yamada M (1998b) A theoretical analysis of quantum noise in semiconductor leasers operating with self-sustained pulsation. IEICE Trans Electron E81-C:290–298

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Ohtsubo .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ohtsubo, J. (2013). Instability and Chaos in Various Laser Structures. In: Semiconductor Lasers. Springer Series in Optical Sciences, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30147-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30147-6_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30146-9

  • Online ISBN: 978-3-642-30147-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics