Skip to main content

Metrology Based on Chaotic Semiconductor Lasers

  • Chapter
  • First Online:
Book cover Semiconductor Lasers

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 111))

  • 3134 Accesses

Abstract

On the way to chaotic evolution, periodicity, bistability, and multistability are observed, such as in the outputs of semiconductor lasers with optical feedback. The system of optical feedback in a semiconductor laser is sometimes called self-mixing semiconductor laser. In a periodic state, the laser output shows not simply periodic oscillation but also hysteresis. Novel applications have been proposed based on these phenomena, for example, a displacement measurement is performed by counting the fringes obtained from bistable self-mixing interference between the internal field and the optical feedback light in the laser cavity. The direction of the displacement is simultaneously determined from asymmetric waveforms showing hysteresis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aoshima T, Ohtsubo J (1992) Two-dimensional vector LDV using laser diode frequency change and self-mixing effect. Opt Commun 92:219–224

    Article  ADS  Google Scholar 

  • Bosch T, Servagent N, Donati S (2001) Optical feedback interferometry for sensing application. Opt Eng 40:20–27

    Article  ADS  Google Scholar 

  • Donati S, Giuliani G, Merlo S (1995) Laser diode feedback interferometer for measurement of displacements without ambiguity. IEEE J Quantum Electron 31:113–119

    Article  ADS  Google Scholar 

  • Donati S, Falzoni L, Merlo S (1996) A PC-interfaced, compact laser-diode feedback interferometer for displacement measurements. IEEE Trans Instrum Meas 45:942–947

    Article  Google Scholar 

  • Durst F, Melling A, Whitelaw JH (1976) Principles and practice of laser Doppler anemometry. Academic Press, New York

    Google Scholar 

  • Giuliani G, Norgia M (2000) Laser diode linewidth measurement by means of self-mixing interferometry. IEEE Photon Technol Lett 12:1028–1030

    Article  ADS  Google Scholar 

  • Giuliani G, Donati S, Passerini M, Bosch T (2001) Angle measurement by injection detection in a laser diode. Opt Eng 40:95–99

    Article  ADS  Google Scholar 

  • Giuliani G, Norgia M, Donati S, Bosch T (2002) Laser diode self-mixing technique for sensing applications. J Opt A Pure Appl Opt 4:S283–S294

    Article  ADS  Google Scholar 

  • Giuliani G, Bozzi-Pietra S, Donati S (2003) Self-mixing laser diode vibrometer. Meas Sci Technol 14:24–32

    Article  ADS  Google Scholar 

  • Gradshteyn IS, Ryzhik IM (1980) Table of integral, series, and products. Academic Press, New York

    Google Scholar 

  • Groot PJ, Gaillatin GM (1989) Backscatter-modulation velocimetry with an external-cavity laser diode. Opt Lett 14:165–167

    Article  ADS  Google Scholar 

  • Lin FY, Liu JM (2004a) Chaotic radar using nonlinear laser dynamics. IEEE J Quantum Electron 40:815–820

    Article  ADS  Google Scholar 

  • Lin FY, Liu JM (2004b) Chaotic lidar. IEEE J Select Topics Quantum Electron 10:991–997

    Article  Google Scholar 

  • Liu Y (1994) Study of chaos in a delay-differential system with a laser diode active interferometer. Ph.D. thesis. Shizuoka University

    Google Scholar 

  • Liu Y, Ohtsubo J, Shoji Y (1994) Accessing of high mode oscillations in a delayed optical bistable system. Opt Commun 105:193–198

    Article  ADS  Google Scholar 

  • Liu Y, Ohtsubo J (1991) Observation of higher-harmonic bifurcations in a chaotic system using a laser diode active interferometer. Opt Commun 85:457–461

    Article  ADS  Google Scholar 

  • Liu Y, Ohtsubo J (1992a) Chaos in an active interferometer. J Opt Soc Am B 9:261–265

    Article  ADS  Google Scholar 

  • Liu Y, Ohtsubo J (1992b) Period three-cycle in a chaotic system using a laser diode active interferometer. Opt Commun 93:311–317

    Article  ADS  Google Scholar 

  • Liu Y, Ohtsubo J (1993) Regeneration spiking oscillation in semiconductor laser with a nonlinear delayed feedback. Phys Rev A 47:4392–4399

    Article  ADS  Google Scholar 

  • Liu Y, Ohtsubo J (1994a) Experimental control of chaos in a laser-diode interferometer with delayed feedback. Opt Lett 19:448–450

    Article  ADS  Google Scholar 

  • Liu Y, Ohtsubo J (1994b) Controlling chaos of a delayed optical bistable system. Opt Rev 1:91–93

    Article  Google Scholar 

  • Merlo S, Donati S (1997) Reconstruction of displacement waveforms with a single-channel laser-diode feedback interferometer. IEEE J Quantum Electron 33:527–531

    Article  ADS  Google Scholar 

  • Mourat G, Servagent N, Bosch T (2000) Distance measurements using the self-mixing effect in a 3-electrode DBR laser diode. Opt Eng 39:738–743

    Article  ADS  Google Scholar 

  • Ohtsubo J, Liu Y (1990) Optical bistability and multistability in active interferometer. Opt Lett 15:731–733

    Article  ADS  Google Scholar 

  • Ohtsubo J, Kumagai H, Shogenji R (2009) Numerical study of Doppler dynamics in self-mixing semiconductor lasers. IEEE Photon Technol Lett 21:742–744

    Article  ADS  Google Scholar 

  • Okoshi T, Kikuchi K, Nakayama A (1980) Novel method for high resolution measurement of laser output spectrum. Electron Lett 16:630–631

    Article  ADS  Google Scholar 

  • Özdemir SK, Shinohara S, Takamiya S, Yoshida H (2000) Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vitro and in vivo experiments. Opt Eng 39:2574–2580

    Article  ADS  Google Scholar 

  • Scalise L (2002) Self-mixing feedback laser Doppler vibrometry. SPIE Proc 4827:374–384

    Article  ADS  Google Scholar 

  • Servagent N, Gouaux F, Bosch T (1998) Measurements of displacement using the self-mixing interference in a laser diode. J Opt 29:168–173

    Article  ADS  Google Scholar 

  • Shinohara S, Naito H, Yoshida H, Ikeda H, Sumi M (1989) Compact and versatile self-mixing type semiconductor laser doppler velocimeters with direction discrimination circuit. IEEE Trans Instrum Meas 38:674–577

    Article  Google Scholar 

  • Wang AB, Wang Y, He H (2008) Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback. IEEE Photon Technol Lett 20:1633–1635

    Article  ADS  Google Scholar 

  • Yoshino T, Nara M, Mnatzakanian S, Lee BS, Strand TC (1987) Laser diode feedback interferometer for stabilization and displacement measurements. Appl Opt 26:892–897

    Article  ADS  Google Scholar 

  • Yu Y, Giuliani G, Donati S (2004) Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect. IEEE Photon Technol Lett 16:990–992

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Ohtsubo .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ohtsubo, J. (2013). Metrology Based on Chaotic Semiconductor Lasers. In: Semiconductor Lasers. Springer Series in Optical Sciences, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30147-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30147-6_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30146-9

  • Online ISBN: 978-3-642-30147-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics