Advertisement

Masonry Buildings under Seismic Actions

  • Mario ComoEmail author
Part of the Springer Series in Solid and Structural Mechanics book series (SSSSM, volume 1)

Abstract

This last chapter deals with the study of the seismic behavior of historic masonry buildings.

Five problems, particularly, are analyzed in this chapter:

  • evaluation of the seismic response of the elastic oscillator, representative of the masonry behavior

  • evaluation of the horizontal strength and ductility of the masonry panel, archetype of the building structure

  • definition of the seismic forces acting on a masonry building and analysis of their transmission across its structural components

  • determination of the seismic out-of-plane strength of masonry walls

  • determination of the seismic in-plane strength of masonry walls with openings.

All the results presented have been obtained in the framework of the Limit Analysis of masonry structures, according to the approach followed in the book. Numerical examples and comparisons with Code prescriptions are given.

Keywords

Seismic Action Horizontal Force Masonry Wall Steel Beam Masonry Building 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abruzzese, D., Como, M., Grimaldi, A.: Analisi limite degli edifici murari sotto spinte orizzontali. Atti Dipartimento di Ingegneria Civile. Università di Roma Tor Vergata, Rome (1986)Google Scholar
  2. Abruzzese, D., Como, M., Lanni, G.: On the lateral strength of multistory masonry walls with openings and horizontal reinforcing connections. In: Tenth World Conf. on Earthquake Eng., Balkema, Rotterdam, pp. 4525–4530 (1992)Google Scholar
  3. Benedetti, D., Casella, M.L.: Shear Strength of masonry piers. In: 7th World Conf. on Earthquake Engineering, Istanbul (1980)Google Scholar
  4. Benedetti, D., Binda, L., Carabelli, E., Contro, R., Corradi Dell’Acqua, L., Franchi, A., Genna, F., Gioda, G., Macchi, G., Nova, R., Peano, A., Rossi, P.P.: Comportamento statico e sismico delle strutture murarie. In: Sacchi Landriani, G., Riccioni, R. (eds.) CLUP, Milan (1982)Google Scholar
  5. Binda, L.: Metodi statici di stima della capacità portante di strutture murarie. da Comportamento Statico e Sismico delle strutture Murarie. CLUP, Milan (1983)Google Scholar
  6. Braga, F., Dolce, M.: A method for analysis of antiseismic masonry multistory buildings. In: 6th I.B.MA (1982)Google Scholar
  7. Carbone, I.V., Fiore, A., Pistone, G.: Le costruzioni in muratura, pp. 58–59. Hoepli, Milan (2001)Google Scholar
  8. Chopra, A.K., Goel, R.K.: A Modal Pushover Analysis for Estimating Seismic Demands for Building. Earthquake Engineering and Structural Dynamics 31 (2002)Google Scholar
  9. Coccia, S., Como, M.: Sull’Analisi sismica delle costruzioni in muratura. In: WONDER Masonry, Proceedings of the Workshop on Design and Rehabilitation of Masonry Structures, Ischia, Polistampa, Florence, October 8-10 (2009) (in press)Google Scholar
  10. Como, M., Lanni, G.: Elementi di Costruzioni Antisismiche. Cremonese, Rome (1981)Google Scholar
  11. Como, M., Grimaldi, A.: Analisi limite di pareti murarie sotto spinta, Università di Napoli. Atti Istituto di Tecnica delle costruzioni (546), Naples (1983)Google Scholar
  12. Como, M., Grimaldi, A.: An unilateral model for the limit Analysis of masonry walls. In: Unilateral problems in Structural Analysis, Proceedings of the 2nd Meeting in Unilateral Problems in Structural Analysis, Ravello, September 22-24. CISM Courses and Lectures, 288. Springer, Vienna (1985)Google Scholar
  13. Como, M., Lanni, G., Sacco, E.: Sul calcolo delle catene di rinforzo negli edifici in muratura soggetti ad azione sismica. In: V° Conf. Naz.le “L’Ingegneria sismica in italia”. ANIDIS, Facoltà di Ingegneria, Università di Palermo (1991)Google Scholar
  14. Como, M., Grimaldi, A., Lanni, G.: New results on the strength evaluation of masonry buildings and monuments. In: 9th World Conf. on Earthquake Eng., Tokyo, Balkema, Rotterdam (1998)Google Scholar
  15. Como, M.: Modellazioni semplici per l’analisi della resistenza sismica degli edifici in muratura. In: Atti del Workshop WONDERMasonry 2006. Dipartimento di Ingegneria Civile. Università di Firenze, Edizioni Polistampa (2006)Google Scholar
  16. Contro, R., Nova, R.: Modello fisico e matematico del legame sforzi e deformazioni del comportamento a rottura della muratura. Corso I.P. sul comportamento statico e sismico delle Strutture Murarie, ISMES, Bergamo (1982)Google Scholar
  17. Di Pasquale, S.: Architettura e Terremoti. Restauro, 59–60–61 (1982)Google Scholar
  18. Fajfar, P.: Capacity Spectrum method based on inelastic demand spectra. Earthquake Engineering and Structural Dynamics 28 (1999)Google Scholar
  19. Galasco, A., Lagomarsino, S., Penna, A.: TREMURI Program: Seismic Analyzer of 3D masonry Program. Università di Genova (2002)Google Scholar
  20. Galasco, A., Lagomarsino, S., Penna, A.: On the use of pushover analysis for existing masonry buildings. In: 1st ECEES, Geneva (2006)Google Scholar
  21. Giangreco, E.: La normativa sismica. Tappe e prospettive. In: Fondamenti di Ingegneria Sismica, Bologna (1983)Google Scholar
  22. Fusier, F., Vignoli, A.: Proposta di un metodo di calcolo per edifici in muratura sottoposti ad azioni orizzontali. Ingegneria sismica, Anno X, 1 (1993)Google Scholar
  23. Giuffrè, A.: La meccanica nell’architettura. Nuova Italia Scientifica, Rome (1986)Google Scholar
  24. Giuffrè, A.: Monumenti e Terremoti, aspetti statici del restauro. In: Scuola di Specializzazione per lo Studio ed il Restauro dei Monumenti, Multigrafica Editrice, Rome (1988)Google Scholar
  25. Magenes, G., Della Fontana, A.: Simplified Non linear Seismic Analysis of Masonry Buildings. Proc. of the British Masonry Society 8 (1998)Google Scholar
  26. Murthy, C.K., Hendry, A.W.: Model experiments in load bearing brickworks. Building Science 1 (1966)Google Scholar
  27. Newmark, N., Hall, W.: Earthquake Spectra and Design. Monograph. Earthquake Engineering Research institute, Oakland, Calif., USA (1982)Google Scholar
  28. Norme Tecniche DM 16.01.1996, come integrate dalla CM n.65 del 10.04.1997 Google Scholar
  29. Norme tecniche OPCM n. 3431 del 03.05.2005 Google Scholar
  30. Norme tecniche DM 14.01.2008, e relative istruzioni per l’applicazione Google Scholar
  31. Petrini, L., Pinho, R., Calvi, G.M.: Criteri di progettazione antisismica degli edifici. IUSS Press (2006)Google Scholar
  32. Priestley, M.J.N., Calvi, G.M., Kowalsky, M.J.: Displacement– Based Seismic Design of Structures. IUSS Press (2007)Google Scholar
  33. Pozzati, P.: Processo di approfondimento delle conoscenze tecniche: inquietanti tendenze del nostro tempo. In: INARCOS, Ingegneri, Architetti, Costruttori (1986)Google Scholar
  34. Ruffolo, F.: La stabilità sismica dei fabbricati. In: Casa editrice “L’Elettricista”, Rome (1912)Google Scholar
  35. Timoshenko, S.: Theory of Elasticity. McGraw Hill, Book Company, New York (1955)Google Scholar
  36. Tomazevic, M.: The Computer Program POR, Report ZRMK, Institute for Testing and Research in Materials and Structures, Ljubljana (1978)Google Scholar
  37. Yokel, Y., Fattal, S.G.: Failures hypothesis for masonry walls. ASCE, Struct. Div. (1976)Google Scholar
  38. Theses (University of Rome Tor Vergata, Fac. of Engineering) Google Scholar
  39. Diego, A.L.: Resistenza e duttilità delle pareti murarie multipiano, supervisors: Coccia, S., Como, M. (2008-2009)Google Scholar
  40. Antonio, I.: Sulla resistenza sismica degli edifici in muratura a pareti regolari multipiano, supervisors: Como, M., Fabiani, F.M.(2006-2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity of Rome TorvergataRomaItaly

Personalised recommendations