Fundamentals of Statics of Masonry Solids and Structures

Part of the Springer Series in Solid and Structural Mechanics book series (SSSSM, volume 1)

Abstract

Groundings of statics of masonry solids and structures are the subject of this chapter.

Masonry behavior is strongly influenced by the dramatically lower strength in tension than in compression. Masonry structures can thus suffer cracks generating displacement fields, called mechanisms, which develop without any internal opposition of the material. Collapse can occur without any material failure.

The Heyman masonry model, the idealized rigid in compression no tension material, is fruitfully assumed as basis of the approach followed in this chapter. The extension of this model to the masonry continuum is then developed. Strains and detachments occurring in a no tension masonry solid can thus obtain a suitable mathematical definition together with the admissible equilibrium. Both a proper virtual work equation, that considers the boundary of the body including the crack surfaces, as a condition on the loads, necessary and sufficient to the existence of the masonry equilibrium, can be formulated. This last condition governs the collapse strength of masonry structures. The notion of the minimum thrust, from both static and kinematical approaches, is then introduced, widening the field of application of the Limit Analysis also to the study of the actual stress states.

A critical analysis of the recent failure of the cathedral of Noto, in Sicily (Italy), useful to a better understanding of the above-discussed mechanical concepts, ends the chapter.

Keywords

Masonry Structure Live Load Pressure Line Settle State Settlement Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angelillo, M., Cardamone, L., Fortunato, A.: A new numerical model for masonry- like structures. Journ. Eng. Mater. and Struct. 5 (2010)Google Scholar
  2. Baratta, A., Toscano, R.: Stati tensionali in pannelli di materiale non resistente a trazione. In: AIMETA, Nat. Conf., Genova (1982)Google Scholar
  3. Benvenuto, E.: La Scienza delle Costruzioni e il suo sviluppo storico. In: Firenze, Sansoni, Ristampa, Edizioni di Storia e Letteratura, Roma (1981)Google Scholar
  4. Benvenuto, E.: An Introduction to the History of Structural Mechanics, Part II. In: Vaulted Structures and Elastic Systems. Springer, N.Y. (1991)Google Scholar
  5. Briccoli Bati, S., Paradiso, M., Tempesta, G.: Analisi Statica, Cinematica ed Equilibrio Limite di Strutture ad arco a Vincoli unilateri. In: IX Congr. Naz.le AIMETA, University of Bari, Ott. 4–7. Tipolito Il Globo, Bari (1988)Google Scholar
  6. Como, M., Grimaldi, A.: An unilateral Model for the Limit Analysis of Masonry Walls. In: Intern. Congr. on Unilateral Problems in Structural Analysis, Ravello, 1983, CISM Udine. Springer (1985)Google Scholar
  7. Como, M.: Equilibrium and Collapse of masonry bodies. In: Meccanica, vol. 27, pp. 185–194. Kluwer Academic Publ., London (1992)Google Scholar
  8. Como, M.: On the role played by Settlements in the Statics of Masonry Structures. In: The Conf. Geotechnical Engineering for the Preservation of Monuments and Historic Sites, Napoli, Italy, October 3–4. A.A. Balkema, Rotterdam (1996)Google Scholar
  9. Como, M.: Multiparameter Loading nd Settlements in Statics of Masonry Structures. In: Proc.Conf. Meccanica delle Murature tra teoria e progetto, Messina, September 18–20, pp. 18–20. Pitagora, Bologna (1996)Google Scholar
  10. Como, M.: Minimum and maximum thrust states in Statics of ancient masonry buildings. In: Proc. 2nd Intern. Arch. Bridge Conf., Venice, Italy, October 6–9. A.A. Balkema, Sinopoli, Rotterdam (1998)Google Scholar
  11. Como, M.: On the Statics of bodies made of compressionally rigid no tension materials. In: Fremond, M., Maceri, F. (eds.) Mechanics, Models and Methods in Civil Engineering. Springer, Heidelberg (2012)Google Scholar
  12. Como, M., Croci, G., Lo Balbo, M.T., Migliacci, A., Selleri, F.: sintesi a cura di, tratta da Consulenza Tecnica sulla Chiesa Madre San Nicolò di Noto. In: Proc. Della Repubblica Presso il Tribunale di Siracusa (1998)Google Scholar
  13. Como, M., Croci, G., Lo Balbo, M.T., Migliacci, A., Selleri, F.: Problematiche ed indagini sul crollo nella Cattedrale di Noto del 13–03–1996. In: Atti del Convegno Nazionale Crolli e Affidabilità delle Strutture Civili, IUAV, Venezia (2001)Google Scholar
  14. Coulomb, C.A.: Essai sur une application des règles…, Mémoires de Mathématique et de Physique. Présentés à l’Académie Royale des Sciences 17, 343–382 (1773, 1776); reprinted in Theorie des machines simples, Paris (1821)Google Scholar
  15. Del Piero, G.: Constitutive equation and compatibility of the external loads for linear elastic masonry–like materials. Meccanica 24, 150–162 (1989)MathSciNetMATHCrossRefGoogle Scholar
  16. Di Pasquale, S.: Statica dei solidi murari: teorie ed esperienze. Atti del Dipartimento di Costruzioni. Università di Firenze (1984)Google Scholar
  17. Di Pasquale, S.: L’Arte del Costruire, Tra conoscenza e scienza. Marsilio, Venezia (1996)Google Scholar
  18. Drucker, C.K.: A definition of stable inelastic material. Journ. Appl. Mechanics 26, 1 (1959)Google Scholar
  19. Fontana, C.: Il tempio vaticano e la sua origine, Roma (1694)Google Scholar
  20. Bacigalupo, A., Gambarotta, L.: Non-local computational homogenization of periodic masonry. Int. J. Multiscale Computational Engineering 9 (2011)Google Scholar
  21. Giuffrè, A.: Letture sulla Meccanica delle Murature Storiche. Facoltà di Architettura dell’Università di Roma La Sapienza, Roma (1990)Google Scholar
  22. Giuffrè, A.: La meccanica nell’Architettura, La statica. La nuova Italia Scientifica, Roma (1991)Google Scholar
  23. Heyman, J.: The stone skeleton. Intern., Journ. Solids Structures 2, 249 (1966)CrossRefGoogle Scholar
  24. Heyman, J.: The masonry arch. Ellis Horwood, Chichester (1982)Google Scholar
  25. Heyman, J.: The stone skeleton. Structural Engineering of Masonry Architecture. Cambridge University Press, Cambridge (1995)Google Scholar
  26. Horne, M.R.: Plastic Theory of structures, T. Nelson and Sons Ltd., LondonGoogle Scholar
  27. Huerta, S.: Mechanics of masonry vaults: The equilibrium approach. In: Lourenco, P.B., Roca, P. (eds.) Proc. 3rd Intern. Sem. on Historic Constructions, Guimaraes, Univ. of Minho, Portugal (2001)Google Scholar
  28. Kooharian, A.: Limit Analysis of Voussoir (Segmental) and Concrete Arches. ACI Journal, Proc. V 49 (December 1952)Google Scholar
  29. Iori, I.: Il quadro storico-scientifico. In: Giandebiaggi, P.(a cura di), Mambriani, C., Ottoni, F. (eds.) Santa Maria del Quartiere in Parma, Storia, rilievo e stabilità di una fabbrica farnesiana, University of Parma,Fondazione Cariparma, Grafiche Step, Parma (2009)Google Scholar
  30. Lucchesi, M., Zani, N.: Some explicit solutions to plane equilibrium problem for no–tension bodies. Structural Engineering and Mechanics 16(3), 295–316 (2003)Google Scholar
  31. Lucchesi, M., Padovani, C., Pasquinelli, G., Zani, N.: Masonry Constructions: Mechanical Models and Numerical Applications. LNACM, vol. 39. Springer, Heidelberg (2008)MATHGoogle Scholar
  32. Prager, W.: An Introduction to Plasticity. Addison Wesley Publ., Reading (1959)MATHGoogle Scholar
  33. Romano, G., Romano, M.: Elastostatics of sstructures with unilateral conditions on strains and displacements. In: Intern. Congr. on Unilateral Problems in Struct. Analysis’, Ravello 1983, CISM. Springer (1985)Google Scholar
  34. Romano, G., Sacco, E.: Sul calcolo di strutture murarie non resistenti a trazione. Atti Istit. Scienza Delle Costruzioni, Università di Napoli (1986)Google Scholar
  35. Sinopoli, A., Corradi, M., Foce, F.: Lower and upper bond therems for masonry arches as rigid systems with unilateral contacts. In: Proc. 2nd Intern. Arch Bridge Conf., Venice, Italy, October 6–9. A.A. Balkema, Rotterdam (1998)Google Scholar
  36. Trovalusci, P.: Sulla modellazione meccanica dei solidi murari. In: Giuffré, A.(a cura di) Sicurezza e conservazione dei centri storici. Il caso di Ortigia, Laterza, Bari (1993)Google Scholar
  37. Trovalusci, P., Masiani, R.: A multifield model for blocky materials base on multiscale description. Int. J. Solids and Structures 42 (2005)Google Scholar
  38. Viollet–le–Duc, E.E.: Dictionnaire raisonné de l’architecture, Paris (1858-1868)Google Scholar
  39. Vol’pert, A.I., Hudjaev, S.I.: Analysis in Classes of Discontinuous Functions and equations of Mathematical Physics, Nijoff (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity of Rome TorvergataRomaItaly

Personalised recommendations