Evolutionary Games in Complex Topologies pp 117-137 | Cite as
Complex Networks from Evolutionary Preferential Attachment
Abstract
In this chapter we analyze the growth and formation of complex networks by coupling the network formation rules to the dynamical states of the elements of the system. As we have already mentioned, some mechanisms have been proposed for constructing complex scale-free networks similar to those observed in natural, social and technological systems from purely topological arguments (for instance, using a preferential attachment rule or any other rule available in the literature). As those works do not include information on the specific function or origin of the network, it is very difficult to discuss the origin of the observed networks on the basis of those models, hence motivating the question we are going to address. The fact that the existing approaches consider separately the two directions of the feedback loop between the function and form of a complex system demands for a new mechanism where the network grows coupled to the dynamical features of its components. Our aim here is to introduce for the first time an attempt in this direction, by linking the growth of the network to the dynamics taking place among its nodes.
Keywords
Evolutionary Dynamic Degree Distribution Cluster Coefficient Preferential Attachment Degree CorrelationReferences
- 1.M. Newman, SIAM Review 45, 167 (2003).Google Scholar
- 2.S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang, Phys. Rep. 424, 175 (2006).Google Scholar
- 3.G. Bianconi and A. L. Barabási, Europhys. Lett. 54, 436 (2001).Google Scholar
- 4.G. Caldarelli, A. Capocci, P. D. L. Rios, and M. A. M. noz, Phys. Rev. Lett. 89, 258702 (2002).Google Scholar
- 5.A. Rapoport and A. M. Chammah, Prisoner’s Dilemma. (Univ. of Michigan Press, Ann Arbor, 1965).Google Scholar
- 6.K. Lindgren and M. Nordahl, Physica D 75, 292 (1994).Google Scholar
- 7.M. A. Nowak and R. M. May, Nature 359, 826 (1992).Google Scholar
- 8.F. C. Santos and J. M. Pacheco, Phys. Rev. Lett. 95, 098104 (2005).Google Scholar
- 9.H. Gintis, Game theory evolving. (Princeton University Press, Princeton, NJ, 2000).Google Scholar
- 10.C. Hauert and M. Doebeli, Nature 428, 643 (2004).Google Scholar
- 11.F. C. Santos, F. J. Rodrigues, and J. M. Pacheco, Proc. Biol. Sci. 273, 51 (2006).Google Scholar
- 12.J. Hofbauer and K. Sigmund, Evolutionary games and population dy- namics. (Cambridge University Press, Cambridge, UK, 1998).Google Scholar
- 13.J. Hofbauer and K. Sigmund, Bull. Am. Math. Soc. 40, 479 (2003).Google Scholar
- 14.J. Gómez-Gardeñes, M. Campillo, L. M. Floría, and Y. Moreno, Phys. Rev. Lett. 98, 108103 (2007).Google Scholar
- 15.M. Nowak, A. Sasaki, C. Taylor, and D. Fudenberg, Nature 428, 646 (2004).Google Scholar
- 16.M. Nowak, Science 314, 1560 (2006).Google Scholar
- 17.E. Lieberman, C. Hauert, and M. A. Nowak, Nature 433, 312 (2005).Google Scholar
- 18.A. Barabási and R. Albert, Science 286, 509 (1999).Google Scholar
- 19.F. C. Santos and J. M. Pacheco, J. Evol. Biol. 19, 726 (2006).Google Scholar
- 20.P. Erdos and A. Renyi, Publicationes Mathematicae Debrecen 6, 290 (1959).Google Scholar
- 21.F. C. Santos, J. M. Pacheco, and T. Lenaerts, Proc. Natl. Acad. Sci. USA 103, 3490 (2006).Google Scholar
- 22.S. Assenza, J. Gómez-Gardeñes, and V. Latora, Phys. Rev. E 78, 017101 (2008).Google Scholar
- 23.A. Pusch, S. Weber, and M. Porto, Phys. Rev. E 77, 036120 (2008).Google Scholar
- 24.L. M. Floría, C. Gracia-Lázaro, J. Gómez-Gardeñes, and Y. Moreno, Phys. Rev. E 79, 026106 (2009).Google Scholar
- 25.R. Axelrod, The complexity of cooperation: agent-based models of com- petition and collaboration. (Princeton University Press., Princeton, NJ, 1997).Google Scholar
- 26.M. Nowak, Evolutionary dynamics: exploring the equations of life. (Harvard University Press., Cambridge, MA, 2006).Google Scholar
- 27.M. Nowak and K. Sigmund, Games on Grids, in: The Geometry of Ecological Interactions. (Cambridge University Press, Cambridge, UK, 2000).Google Scholar
- 28.R. Axelrod and W. Hamilton, Science 211, 1390 (1981).Google Scholar