Advertisement

The Prisoner’s Dilemma Game on Random Scale-Free Networks

  • Julia Poncela Casasnovas
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

As it has been well established in previous chapters, when implementing the Prisoner’s Dilemma (PD) game on top of complex networks, the scale-free (SF) topologies greatly enhance cooperation [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], compared to other topologies as ER networks. It is also well known that the heterogeneity on the degree distribution of these structures is a crucial factor in order to achieve such high levels of cooperation in the system. More specifically, the hubs, or nodes with the highest connectivity, act always as cooperators, surrounding themselves with middle-class cooperators, and creating a unique cluster (or ‘Eden’) of cooperation that is able to resist the attack of defectors, even when cooperation gets really expensive. Nonetheless, up to now we have only focused on the BA model [13], among other SF network models available in literature (for a quick review of some of them, see [14, 15]). BA SF networks have some correlations by construction, the so-called age-correlations [16, 17, 18]. That means that older nodes, the ones that arrived earlier to the system when it was being built are interconnected, since they formed the original core of nodes, and besides, these older nodes usually become hubs as the network grows. The existence of age-correlations can be found in some real systems also, such as the collaboration or citation networks, or the ’old boy’ network, made up of former students of the Ivy League that now work at the top investment banks [19].

Keywords

Degree Distribution Field Approach Cooperation Level Degree Classis Rewire Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. C. Santos and J. M. Pacheco, Phys. Rev. Lett. 95, 098104 (2005).Google Scholar
  2. 2.
    F. C. Santos, F. J. Rodrigues, and J. M. Pacheco, Proc. Biol. Sci. 273, 51 (2006).Google Scholar
  3. 3.
    F. C. Santos and J. M. Pacheco, J. Evol. Biol. 19, 726 (2006).Google Scholar
  4. 4.
    F. C. Santos, J. M. Pacheco, and T. Lenaerts, Proc. Natl. Acad. Sci. USA 103, 3490 (2006).Google Scholar
  5. 5.
    H. Ohtsuki, E. L. C. Hauert, and M. A. Nowak, Nature 441, 502 (2006).Google Scholar
  6. 6.
    G. Abramson and M. Kuperman, Phys. Rev. E 63, 030901(R) (2001).Google Scholar
  7. 7.
    V. M. Eguí­luz, M. G. Zimmermann, C. J. Cela-Conde, and M. San Miguel, American Journal of Sociology 110, 977 (2005).Google Scholar
  8. 8.
    T. Killingback and M. Doebeli, Proc. R. Soc. Lond. 263, 1135 (1996).Google Scholar
  9. 9.
    G. Szabó and G. Fő¡th, Phys. Rep. 446, 97 (2007).Google Scholar
  10. 10.
    A. Szolnoki, M. Perc, and Z. Danku, Physica A 387, 2075 (2008).Google Scholar
  11. 11.
    J. Vukov and G. S. A. Szolnoki, Phys. Rev. E 77, 026109 (2008).Google Scholar
  12. 12.
    J. Gómez-Gardeñes, M. Campillo, L. M. Florí­a, and Y. Moreno, Phys. Rev. Lett. 98, 108103 (2007).Google Scholar
  13. 13.
    A. Barabási and R. Albert, Science 286, 509 (1999).Google Scholar
  14. 14.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang, Phys. Rep. 424, 175 (2006).Google Scholar
  15. 15.
    G. Caldarelli, A. Capocci, P. D. L. Rios, and M. A. M. noz, Phys. Rev. Lett. 89, 258702 (2002).Google Scholar
  16. 16.
    S. N. Dorogovtsev and J. F. F. Mendes, Evolution of networks. From biological nets to the Internet and the WWW. (Oxford University Press, Oxford, UK, 2003).Google Scholar
  17. 17.
    M. Newman, SIAM Review 45, 167 (2003).Google Scholar
  18. 18.
    R. Albert and A. L. Barabási, Rev. Mod. Phys. 74, 47 (2002).Google Scholar
  19. 19.
    S. H. Strogatz, Nature 410, 268 (2001).Google Scholar
  20. 20.
    J. Hofbauer, P. Schuster, and K. Sigmund, J. Theor. Biol. 81, 609 (1979).Google Scholar
  21. 21.
    P. Taylor and L. Jonker, Math. Biosci. 40, 145 (1978).Google Scholar
  22. 22.
    H. Gintis, Game theory evolving. (Princeton University Press, Princeton, NJ, 2000).Google Scholar
  23. 23.
    H. Ohtsuki and M. A. Nowak, J. Theor. Biol. 243, 86 (2006).Google Scholar
  24. 24.
    S. Maslov and K. Sneppen, Science 296, 910 (2002).Google Scholar
  25. 25.
    M. Molloy and B. Reed, Combinatorics, Probability and Computing 7, 295 (1998).Google Scholar
  26. 26.
    K. Lindgren and M. Nordahl, Physica D 75, 292 (1994).Google Scholar
  27. 27.
    M. A. Nowak and R. M. May, Nature 359, 826 (1992).Google Scholar
  28. 28.
    C. Hauert and M. Doebeli, Nature 428, 643 (2004).Google Scholar
  29. 29.
    J. Hofbauer and K. Sigmund, Evolutionary games and population dynamics. (Cambridge University Press, Cambridge, UK, 1998).Google Scholar
  30. 30.
    J. Hofbauer and K. Sigmund, Bull. Am. Math. Soc. 40, 479 (2003).Google Scholar
  31. 31.
    R. Pastor-Satorras and A. Vespignani., Phys. Rev. Lett. 86, 3200 (2001).Google Scholar
  32. 32.
    R. Pastor-Satorras and A. Vespignani., Phys. Rev. E 63, 066117 (2001).Google Scholar
  33. 33.
    Y. Moreno, R. Pastor-Satorras, and A. Vespignani., European Physical Journal B 26, 521 (2002).Google Scholar
  34. 34.
    L. M. Florí­a, C. Gracia-Lá¡zaro, J. Gómez-Gardeñes, and Y. Moreno, Phys. Rev. E 79, 026106 (2009).Google Scholar
  35. 35.
    M. Nowak, Science 314, 1560 (2006).Google Scholar
  36. 36.
    S. Assenza, J. Gómez-Gardeñes, and V. Latora, Phys. Rev. E 78, 017101 (2008).Google Scholar
  37. 37.
    A. Pusch, S. Weber, and M. Porto, Phys. Rev. E 77, 036120 (2008).Google Scholar
  38. 38.
    L. Costa, F. A. Rodrigues, G. Travieso, and P. R. V. Boas., Advances in Physics 56, 167 (2007).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Julia Poncela Casasnovas
    • 1
  1. 1.University of ZaragozaZaragozaSpain

Personalised recommendations