Other Games on Static Complex Networks

  • Julia Poncela Casasnovas
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In the last chapter, we have been discussing in some detail the dynamics and microscopical organization of the the so-called weak Prisoner’s Dilemma Game [1] on static complex networks, where the payoff for a cooperator against a defector was fixed to \(S=0\) (strictly speaking, for this value of \(S\), we are really at the border between the Prisoner’s Dilemma game and the Hawks and Doves -HD- game). In this chapter we want to address very briefly the issue of other evolutionary games on graphs.

Keywords

Evolutionary Game Payoff Matrix Mutual Cooperation Strict Nash Equilibrium Stag Hunt Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Szabó and G. Fáth, Phys. Rep. 446, 97 (2007).Google Scholar
  2. 2.
    M. Nowak and K. Sigmund, Nature 437, 1291 (2005).Google Scholar
  3. 3.
    F. C. Santos, J. M. Pacheco, and T. Lenaerts, PLos Comput. Biol. 2(10), e140 (2006).Google Scholar
  4. 4.
    J. Maynard Smith, Evolution and the Theory of Games. (Cambridge University Press, Cambridge, UK, 1982).Google Scholar
  5. 5.
    L. E. Blume, Games and Economic Behavior 5, 387 (1993).Google Scholar
  6. 6.
    G. Ellison, Econometrica 61, 1047 (1993).Google Scholar
  7. 7.
    F. C. Santos, J. M. Pacheco, and T. Lenaerts, Proc. Natl. Acad. Sci. USA 103, 3490 (2006).Google Scholar
  8. 8.
    C. P. Roca, J. A. Cuesta, and A. Sánchez, Phys. Rev. E 80, 046106 (2009).Google Scholar
  9. 9.
    T. Killingback and M. Doebeli, Proc. R. Soc. Lond. 263, 1135 (1996).Google Scholar
  10. 10.
    M. Tomassini, L. Luthi, and M. Giacobini, Phys. Rev. E 73, 106 (2006).Google Scholar
  11. 11.
    C. Hauert and M. Doebeli, Nature 428, 643 (2004).Google Scholar
  12. 12.
    M. Sysi-Aho, J. Saramaki, J. Kertész, and K. Kaski, European Physical Journal B 44, 129 (2005).Google Scholar
  13. 13.
    L. Zhong, D. Zheng, B. Zheng, C. Xu, and P. Hui, Europhys. Lett. 76, 724 (2006).Google Scholar
  14. 14.
    A. Kun, G. Boza, and I. Scheuring, Behav. Ecol. 17, 633 (2006).Google Scholar
  15. 15.
    H. Gintis, Game theory evolving. (Princeton University Press, Princeton, NJ, 2000).Google Scholar
  16. 16.
    F. C. Santos and J. M. Pacheco, Phys. Rev. Lett. 95, 098104 (2005).Google Scholar
  17. 17.
    F. C. Santos, F. J. Rodrigues, and J. M. Pacheco, Proc. Biol. Sci. 273, 51 (2006).Google Scholar
  18. 18.
    J. Hofbauer and K. Sigmund, Evolutionary games and population dynamics. (Cambridge University Press Cambridge, UK, 1998).Google Scholar
  19. 19.
    J. Hofbauer and K. Sigmund, Bull. Am. Math. Soc. 40, 479 (2003).Google Scholar
  20. 20.
    P. Erdős and A. Reńyi, Publicationes Mathematicae Debrecen 6, 290 (1959).Google Scholar
  21. 21.
    A. Barabási and R. Albert, Science 286, 509 (1999).Google Scholar
  22. 22.
    F. C. Santos and J. M. Pacheco, J. Evol. Biol. 19, 726 (2006).Google Scholar
  23. 23.
    J. Gómez-Gardeñes, M. Campillo, L. M.Floría, and Y. Moreno, Phys. Rev. Lett. 98, 108103 (2007).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Julia Poncela Casasnovas
    • 1
  1. 1.University of ZaragozaZaragozaSpain

Personalised recommendations