The Prisoner’s Dilemma on Static Complex Networks

  • Julia Poncela Casasnovas
Part of the Springer Theses book series (Springer Theses)


The PD game has been frequently used when trying to model the emergence of cooperative behavior in a social or biological system. The questions of why and how cooperation arises and survives in an environment where it is clearly more expensive for the individual than defection in the short term have been subject of intense research for quite some time, and the PD turned out to be a very useful tool for this aim.


Degree Distribution Cooperator Node Fluctuate Individual Defector Node Cooperator Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W. Hamilton, J. Theor. Biol. 7, 1 (1964).CrossRefGoogle Scholar
  2. 2.
    R. Axelrod and W. Hamilton, Science 211, 1390 (1981).MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    M. Nowak and K. Sigmund, Nature 437, 1291 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    J. Hofbauer and K. Sigmund, Evolutionary games and population dynamics. (Cambridge University Press, Cambridge, UK, 1998).zbMATHCrossRefGoogle Scholar
  5. 5.
    J. Hofbauer and K. Sigmund, Bull. Am. Math. Soc. 40, 479 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    M. Nowak, Science 314, 1560 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    M. A. Nowak and R. M. May, Nature 359, 826 (1992).ADSCrossRefGoogle Scholar
  8. 8.
    F. C. Santos and J. M. Pacheco, Phys. Rev. Lett. 95, 098104 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    F. C. Santos, F. J. Rodrigues, and J. M. Pacheco, Proc. Biol. Sci. 273, 51 (2006).CrossRefGoogle Scholar
  10. 10.
    H. Ohtsuki, E. L. C. Hauert, and M. A. Nowak, Nature 441, 502 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    G. Abramson and M. Kuperman, Phys. Rev. E 63, 030901(R) (2001).Google Scholar
  12. 12.
    V. M. Eguíluz, M. G. Zimmermann, C. J. Cela-Conde, and M. San Miguel, American Journal of Sociology 110, 977 (2005).CrossRefGoogle Scholar
  13. 13.
    T. Killingback and M. Doebeli, Proc. R. Soc. Lond. 263, 1135 (1996).ADSCrossRefGoogle Scholar
  14. 14.
    G. Szabó and G. Fáth, Phys. Rep. 446, 97 (2007).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    A. Szolnoki, M. Perc, and Z. Danku, Physica A 387, 2075 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    J. Vukov and G. S. A. Szolnoki, Phys. Rev. E 77, 026109 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    J. Gómez-Gardeñes, M. Campillo, L. M. Floría, and Y. Moreno, Phys. Rev. Lett. 98, 108103 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    F. C. Santos and J. M. Pacheco, J. Evol. Biol. 19, 726 (2006).CrossRefGoogle Scholar
  19. 19.
    K. Lindgren and M. Nordahl, Physica D 75, 292 (1994).ADSzbMATHCrossRefGoogle Scholar
  20. 20.
    M. Nowak, S. Bonhoeffer, and R. May, Proc. Natl. Acad. Sci. USA 91, 4877 (1994).ADSzbMATHCrossRefGoogle Scholar
  21. 21.
    J. Maynard Smith, Evolution and the Theory of Games. (Cambridge University Press, Cambridge, UK, 1982).zbMATHCrossRefGoogle Scholar
  22. 22.
    H. Gintis, Game theory evolving. (Princeton University Press, Princeton, NJ, 2000).zbMATHGoogle Scholar
  23. 23.
    C. Hauert and M. Doebeli, Nature 428, 643 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    C. P. Roca, J. A. Cuesta, and A. Sánchez, Phys. Rev. E 80, 046106 (2009).ADSCrossRefGoogle Scholar
  25. 25.
    J. Gómez-Gardeñes and Y. Moreno, Phys. Rev. E 73, 056124 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    P. Erdős and A. Renyi, Publicationes Mathematicae Debrecen 6, 290 (1959).MathSciNetGoogle Scholar
  27. 27.
    A. Barabási and R. Albert, Science 286, 509 (1999).MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    F. C. Santos, J. M. Pacheco, and T. Lenaerts, Proc. Natl. Acad. Sci. USA 103, 3490 (2006).ADSCrossRefGoogle Scholar
  29. 29.
    S. Assenza, J. Gómez-Gardeñes, and V. Latora, Phys. Rev. E 78, 017101 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    G. Bianconi and A. Capocci, Phys. Rev. Lett. 90, 078701 (2003).ADSCrossRefGoogle Scholar
  31. 31.
    G. Bianconi and M. Marsili, J. Stat. Mech. p. P06005 (2005).Google Scholar
  32. 32.
    E. Marinari and R. Monasson, J. Stat. Mech. p. P09004 (2004).Google Scholar
  33. 33.
    R. Pastor-Satorras and A. Vespignani, Phys. Rev. E 63, 066117 (2001).ADSCrossRefGoogle Scholar
  34. 34.
    Y. Moreno, R. Pastor-Satorras, and A. Vespignani, European Physical Journal B 26, 521 (2002).ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Julia Poncela Casasnovas
    • 1
  1. 1.University of ZaragozaZaragozaSpain

Personalised recommendations