Some Basic Concepts on Complex Networks and Games

  • Julia Poncela Casasnovas
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Since this thesis is mainly devoted to the study of one particular game, the Prisoner’s Dilemma, on complex networks (static ones in the first part of it, and two more sophisticated models that combine the growth with the play in the second), we consider that it is useful to state and explain first some notions on both networks and games. So, in this chapter, we want to provide just a few very basic concepts and definitions on Complex Networks and Game Theory that we will use later on during the full elaboration of this thesis. We hope they will help setting the foundations to understand our work perfectly, so the reader will not need any external help to comprehend, and also it will serve as an introduction to the two fundamental components on which this thesis is based.

Keywords

Nash Equilibrium Random Graph Degree Distribution Cluster Coefficient Real Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang, Phys. Rep. 424, 175 (2006).Google Scholar
  2. 2.
    M. E. J. Newman, SIAM Review 45, 167 (2003).Google Scholar
  3. 3.
    J. Dunne, R. Williams, and N. Martinez, Marine Ecological Press Series 273, 291 (2004).Google Scholar
  4. 4.
    M. E. J. Newman, Proc. Natl. Acad. Sci. USA 98, 404 (2001).Google Scholar
  5. 5.
    A. Arenas, L. Danon, A. Díaz-Guilera, P. Gleiser, and R. Guimerá European Physical Journal B 38(2), 373 (2004).Google Scholar
  6. 6.
    R. Guimerá and M. Sales-Pardo, Proc. Natl. Acad. Sci. USA 106, 22073 (2009).Google Scholar
  7. 7.
    S. Gómez, P. Jensen, and A. Arenas, Phys. Rev. E 80, 016114 (2009).Google Scholar
  8. 8.
    M. Newman and M. Girvan, Phys. Rev. E 69, 026113 (2004).Google Scholar
  9. 9.
    L. Danon, A. Díaz-Guilera, J. Duch, and A. Arenas, J. Stat. Mech. p. P09008 (2005).Google Scholar
  10. 10.
    A. Barabási and Z. Oltvai Nature Reviews, Genetics 5, 101 (2004).Google Scholar
  11. 11.
    J. Duch, and A. Arenas Phys. Rev. E 72, 027104 (2005).Google Scholar
  12. 12.
    L. Danon, J. Duch, A. Arenas, and A. Díaz-Guilera, World Scientific p. 93 (2007).Google Scholar
  13. 13.
    M. Sales-Pardo, R. Guimerà, A. Moreira, and L. Amaral Proc. Natl. Acad. Sci. USA 104, 15224 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    P. Erdős, and A. Renyi, Publicationes Mathematicae Debrecen 6, 290 (1959).Google Scholar
  15. 15.
    D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).Google Scholar
  16. 16.
    S. Milgram, Psycol. Today 2, 60 (1967).Google Scholar
  17. 17.
    J. Guare, Six degrees of separation: a play. (Vintage Books, New York, 1990).Google Scholar
  18. 18.
    J. Travers and S. Milgram, Sociometry 32, 425 (1969).Google Scholar
  19. 19.
    L. Amaral, A.Scala, M. Barthélémy, and H. Stanley, Proc. Natl. Acad. Sci. USA 97, 11149 (2000).Google Scholar
  20. 20.
    M. Barthélémy and L. Amaral, Phys. Rev. Lett. 82, 3180 (1999).Google Scholar
  21. 21.
    H. Simon, Biometrika 42, 425 (1955).MathSciNetMATHGoogle Scholar
  22. 22.
    R. Merton, Science 159, 56 (1968).Google Scholar
  23. 23.
    R. Albert, and A. L. Barabási, Rev. Mod. Phys. 74, 47 (2002).Google Scholar
  24. 24.
    S. N. Dorogovtsev, J. F. Mendes, and A. N. Samukhin, Phys. Rev. Lett. 85, 4633 (2000).Google Scholar
  25. 25.
    S. N. Dorogovtsev, and J. F. F. Mendes, Evolution of networks. From biological nets to the Internet and the WWW. (Oxford University Press, Oxford, UK, 2003).Google Scholar
  26. 26.
    P. Holme, and B. Kim, Phys. Rev. E 65, 026107 (2002).Google Scholar
  27. 27.
    G. Caldarelli, A. Capocci, P. D. L. Rios, and M. A. M. noz, Phys. Rev. Lett. 89, 258702 (2002).Google Scholar
  28. 28.
    J. Gómez-Gardeñes and Y. Moreno, Phys. Rev. E 73, 056124 (2006).Google Scholar
  29. 29.
    R. Pastor-Satorras, and A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001a).Google Scholar
  30. 30.
    R. Pastor-Satorras and A. Vespignani, Phys. Rev. E 63, 066117 (2001b).Google Scholar
  31. 31.
    Y. Moreno, R. Pastor-Satorras, and A. Vespignani, European Physical Journal B 26, 521 (2002).Google Scholar
  32. 32.
    R. Pastor-Satorras, and A. Vespignani, Phys. Rev. E 65, 036104 (2002).Google Scholar
  33. 33.
    M. Boguñá, R. Pastor-Satorras, and A. Vespignani, Phys. Rev. Lett. 90, 028701 (2003).Google Scholar
  34. 34.
    R. May, and A. Lloyd, Phys. Rev. E 64, 066112 (2001).Google Scholar
  35. 35.
    M. Newman, Phys. Rev. E 66, 016128 (2002).Google Scholar
  36. 36.
    J. Gómez-Gardeñes, Y. Moreno, and A. Arenas, Phys. Rev. Lett. 98, 034101 (2007a).Google Scholar
  37. 37.
    L. Donetti, P. I. Hurtado, and M. A. Muñoz, Phys. Rev. Lett. 95, 188701 (2005).Google Scholar
  38. 38.
    J. Gómez-Gardeñes, and Y. Moreno, Int. J. Bifurcation Chaos 17, 2501 (2007).Google Scholar
  39. 39.
    J. Gómez-Gardeñes, Y. Moreno, and A. Arenas, Phys. Rev. E 75, 066106 (2007b).Google Scholar
  40. 40.
    A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Phys. Rep. 469, 93 (2008).Google Scholar
  41. 41.
    R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev. Lett. 86, 3682 (2001).Google Scholar
  42. 42.
    R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev. Lett. 85, 4626 (2000).Google Scholar
  43. 43.
    C. Castellano, S. Fortunato, and V. Loreto, Rev. Mod. Phys. 81, 591 (2009).Google Scholar
  44. 44.
    G. Szabó and G. Fáth, Phys. Rep. 446, 97 (2007).Google Scholar
  45. 45.
    V. Colizza, A. Barrat, M. Barthelemy, A. Valleron, and A. Vespignani, PLos Medicine 4, e13 (2007).Google Scholar
  46. 46.
    R. Axelrod, J. Conflict Res. 41, 203 (1997b).Google Scholar
  47. 47.
    K. Klemm, V. Equíluz, R. Toral, and M. San Miguel, Phys. Rev. E 67, 026120 (2003a).Google Scholar
  48. 48.
    D. Vilone, A. Vespignani, and C. Castellano, European Physical Journal B 30, 399 (2002).Google Scholar
  49. 49.
    K. Klemm, V. Eguiluz, R. Toral, and M. San Miguel, Physica A 327, 1 (2003b).Google Scholar
  50. 50.
    J. González-Avella, V. Eguíluz, M. Cosenza, K. Klemm, J. Herrera, and M. San Miguel, Phys. Rev. E 73, 046119 (2006).Google Scholar
  51. 51.
    C. Castellano, M. Marsili, and A. Vespignani, Phys. Rev. Lett. 85, 3536 (2000).Google Scholar
  52. 52.
    B. Guerra, J. Poncela, J. Gómez-Gardeñes, V. Latora, and Y. Moreno, Phys. Rev. E 81, 056105 (2010).Google Scholar
  53. 53.
    K. Klemm, V. Eguiluz, R. Toral, and M. San Miguel, J. Economic Dynamics and Control 29, 321 (2005).Google Scholar
  54. 54.
    K. Klemm, V. Eguíluz, R. Toral, and M. San Miguel, Phys. Rev. E 67, 045101(R) (2003c).Google Scholar
  55. 55.
    J. Gonzalez-Avella, M. Cosenza, V. Eguíluz, and M. San Miguel, New J. Phys. 12, 013010 (2010).Google Scholar
  56. 56.
    A. Grabowski, and R. A. Kosinski, Phys. Rev. E 73, 016135 (2006).Google Scholar
  57. 57.
    C. Gracia-Lázaro, L. Lafuerza, L. Floria, and Y. Moreno, Phys. Rev. E 80, 046123 (2009).Google Scholar
  58. 58.
    T. Schelling, The American Economic Review 59, 488 (1969).Google Scholar
  59. 59.
    R. Axelrod, and W. Hamilton, Science 211, 1390 (1981).Google Scholar
  60. 60.
    J. von Neumann, and O. Morgenstern, Theory of Games and Economic Behavior. (Princeton University Press, Princeton, NJ, 1944).Google Scholar
  61. 61.
    J. Maynard Smith, and G. Price, Nature 246, 15 (1973).Google Scholar
  62. 62.
    H. Gintis, Game theory evolving. (Princeton University Press, Princeton, NJ, 2000).Google Scholar
  63. 63.
    J. Hofbauer, and K. Sigmund, Evolutionary games and population dynamics. (Cambridge University Press, Cambridge, UK, 1998).Google Scholar
  64. 64.
    J. Nash, Proc. Natl. Acad. Sci. USA 36, 48 (1950).Google Scholar
  65. 65.
    T. Killingback, and M. Doebeli, Proc. R. Soc. Lond. 263, 1135 (1996).Google Scholar
  66. 66.
    C. P. Roca, J. A. Cuesta, and A. Sánchez, Phys. Rev. E 80, 046106 (2009).Google Scholar
  67. 67.
    M. Tomassini, L. Luthi, and M. Giacobini, Phys. Rev. E 73, 106 (2006).Google Scholar
  68. 68.
    C. Hauert, and M. Doebeli, Nature 428, 643 (2004).Google Scholar
  69. 69.
    L. E. Blume, Games and Economic Behavior 5, 387 (1993).Google Scholar
  70. 70.
    G. Ellison, Econometrica 61, 1047 (1993).Google Scholar
  71. 71.
    R. Axelrod, The Evolution of Cooperation. (Basic Books, New York, 1984).Google Scholar
  72. 72.
    W. Hamilton, J. Theor. Biol. 7, 1 (1964).Google Scholar
  73. 73.
    M. Nowak, Evolutionary dynamics: exploring the equations of life. (Harvard University Press, Cambridge, MA, 2006b).Google Scholar
  74. 74.
    J. Hofbauer, P. Schuster, and K. Sigmund, J. Theor. Biol. 81, 609 (1979).Google Scholar
  75. 75.
    P. Taylor, and L. Jonker, Math. Biosci. 40, 145 (1978).Google Scholar
  76. 76.
    H. Ohtsuki, and M. A. Nowak, J. Theor. Biol. 243, 86 (2006).Google Scholar
  77. 77.
    M. Nowak, Science 314, 1560 (2006a).Google Scholar
  78. 78.
    M. A. Nowak, and K. Sigmund, Science 303, 793 (2004).Google Scholar
  79. 79.
    A. Traulsen, M. Nowak, and J. Pacheco, Phys. Rev. E 74, 011909 (2006).Google Scholar
  80. 80.
    P. Moran, Mathematical Proceedings of the Cambridge Philosophical Society 54, 60 (1958).Google Scholar
  81. 81.
    M. Nowak, A. Sasaki, C. Taylor, and D. Fudenberg, Nature 428, 646 (2004).Google Scholar
  82. 82.
    M. Nowak, and K. Sigmund, Nature 393, 573 (1998).Google Scholar
  83. 83.
    M. Nowak, and K. Sigmund, Nature 437, 1291 (2005).Google Scholar
  84. 84.
    A. Traulsen, and M. A. Nowak, Proc. Natl. Acad. Sci. USA 103, 10952 (2006).Google Scholar
  85. 85.
    M. Nowak and K. Sigmund, Games on Grids, in: The Geometry of Ecological Interactions. (Cambridge University Press, Cambridge, UK, 2000).Google Scholar
  86. 86.
    M. A. Nowak and R. M. May, Nature 359, 826 (1992).Google Scholar
  87. 87.
    M. Nowak, S. Bonhoeffer, and R. May, Int. J. Bifurcation Chaos 4, 33 (1994).Google Scholar
  88. 88.
    M. Nowak, S. Bonhoeffer, and R. May, Proc. Natl. Acad. Sci. USA 91, 4877 (1994).Google Scholar
  89. 89.
    G. Szabó and C. Tőke, Phys. Rev. E 58, 69 (1998).Google Scholar
  90. 90.
    M. Nakamaru, H. Matsuda, and Y. Iwasa, J. Theor. Biol. 184, 65 (1997).Google Scholar
  91. 91.
    C. Hauert and G. Szabó, Am. J. Phys. 73, 405 (2005).Google Scholar
  92. 92.
    E. Lieberman, C. Hauert, and M. A. Nowak, Nature 433, 312 (2005).Google Scholar
  93. 93.
    D. Callaway, M. Newman, S. Strogatz, and D. Watts, Phys. Rev. Lett. 85, 5468 (2000).Google Scholar
  94. 94.
    G. Abramson, and M. Kuperman, Phys. Rev. E 63, 030901(R) (2001).Google Scholar
  95. 95.
    F. C. Santos, and J. M. Pacheco, Phys. Rev. Lett. 95, 098104 (2005).Google Scholar
  96. 96.
    F. C. Santos, F. J. Rodrigues, and J. M. Pacheco, Proc. Biol. Sci. 273, 51 (2006a).Google Scholar
  97. 97.
    H. Ohtsuki, E. L. C. Hauert, and M. A. Nowak, Nature 441, 502 (2006).Google Scholar
  98. 98.
    F. C. Santos, and J. M. Pacheco, J. Evol. Biol. 19, 726 (2006).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Julia Poncela Casasnovas
    • 1
  1. 1.University of ZaragozaZaragozaSpain

Personalised recommendations