Advertisement

Introduction

  • Julia Poncela Casasnovas
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Many real systems from very different fields, such as food webs [1, 2, 3], the electrical power grids, the social entanglement of acquaintances [4], the Word Wide Web or the Internet [5, 6, 7], were almost intractable just a few years ago due to both their large number of individuals and the complexity of the pattern of connections among them. They all have been recently characterized as networks [8, 9, 10, 11, 12, 13], opening a new and very promising subject for researchers all over the world.

Keywords

Random Graph Degree Distribution Cluster Coefficient Real Network Average Path Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Dunne, R. Williams, and N. Martinez., Marine Ecological Press Series 273, 291 (2004).Google Scholar
  2. 2.
    J. Cohen, F. Briand, and C. Newman, Community food webs: data and theory. (Springer-Verlag, New York, 1990).Google Scholar
  3. 3.
    R. Williams and N. Martínez, Nature 404, 108 (2000).Google Scholar
  4. 4.
    B. Skyrms and R. Pemantle, Proc. Natl. Acad. Sci. USA 97, 9340 (2000).Google Scholar
  5. 5.
    R. Pastor-Satorras and A. Vespignani., Evolution and Structure of the Internet: A Statistical Physics Approach. (Cambridge University Press, Cambridge, 2004).Google Scholar
  6. 6.
    A. Brodera, R. Kumarb, F. Maghoula, P. Raghavanb, S. Rajagopalanb, R. Statac, A. Tomkinsb, and J. Wienerc, Graph structure in the Web. Comput. Newt. 33, 309 (2000).Google Scholar
  7. 7.
    M. Faloutsos, P. Faloutsos, and C. Faloutsos, Comput. Commun. Rev. 29, 251 (1999).Google Scholar
  8. 8.
    A. L. Barabási and R. Albert, Science 286, 509 (1999).Google Scholar
  9. 9.
    S. H. Strogatz, Nature 410, 268 (2001).Google Scholar
  10. 10.
    D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).Google Scholar
  11. 11.
    M. Newman, SIAM Review 45, 167 (2003).Google Scholar
  12. 12.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang, Phys. Rep. 424, 175 (2006).Google Scholar
  13. 13.
    R. Albert and A. L. Barabási, Rev. Mod. Phys. 74, 47 (2002).Google Scholar
  14. 14.
    T. B. Achacoso and W. S. Yamamoto, AY’s neuroanatomy of C. elegans for computation. (CRC Press, Boca Raton, Fl, 1992).Google Scholar
  15. 15.
    H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási, The large-scale organization of metabolic networks. Nature 407, 651 (2000).Google Scholar
  16. 16.
    A. Arenas, L. Danon, A. Díaz-Guilera, P. Gleiser, and R. Guimerá. Community analysis in social networks. European Physical Journal B 38(2), 373 (2004).Google Scholar
  17. 17.
    D. Balcan, V. Colizza, B. Goncalves, H. Hu, J. J. Ramasco, and A. Vespignani, Proc. Natl. Acad. Sci. USA 106, 21484 (2009).Google Scholar
  18. 18.
    P. Erdős and A. Reńyi, Publicationes Mathematicae Debrecen, 6, 290 (1959).Google Scholar
  19. 19.
    S. Milgram, Psycol. Today, 2, 60 (1967).Google Scholar
  20. 20.
    J. Guare, Six degrees of separation: a play. (Vintage Books, New York, 1990).Google Scholar
  21. 21.
    J. Travers and S. Milgram, Sociometry, 32, 425 (1969).Google Scholar
  22. 22.
    G. Szabó and G. Fáth, Evolutionary games on graphs. Phys. Rep. 446, 97 (2007).Google Scholar
  23. 23.
    A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Phys. Rep. 469, 93 (2008).Google Scholar
  24. 24.
    R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001).Google Scholar
  25. 25.
    R. Pastor-Satorras and A. Vespignani, Phys. Rev. E, 63, 066117 (2001).Google Scholar
  26. 26.
    Y. Moreno, R. Pastor-Satorras, and A. Vespignani, European Physical Journal B, 26, 521 (2002).Google Scholar
  27. 27.
    R. Pastor-Satorras and A. Vespignani, Phys. Rev. E, 65, 036104 (2002).Google Scholar
  28. 28.
    M. Boguñá, R. Pastor-Satorras, and A. Vespignani, Phys. Rev. Lett. 90, 028701 (2003).Google Scholar
  29. 29.
    R.M. May and A.L. Lloyd, Phys. Rev. E 64, 066112 (2001).Google Scholar
  30. 30.
    M. Newman, Phys. Rev. E 66, 016128 (2002).Google Scholar
  31. 31.
    J. Gómez-Gardeñes, Y. Moreno, and A. Arenas, Phys. Rev. Lett. 98, 034101 (2007).Google Scholar
  32. 32.
    L. Donetti, P. I. Hurtado, and M. A. Muñoz, Phys. Rev. Lett. 95, 188701, (2005).Google Scholar
  33. 33.
    J. Gómez-Gardeñes and Y. Moreno, Int. J. Bifurcation Chaos, 17, 2501 (2007).Google Scholar
  34. 34.
    J. Gómez-Gardeñes, Y. Moreno, and A. Arenas, Phys. Rev. E 75, 066106 (2007).Google Scholar
  35. 35.
    M. A. Nowak and K. Sigmund, Nature 437, 1291, 2005.Google Scholar
  36. 36.
    R. Axelrod, The Evolution of Cooperation. (Basic Books, New York, 1984).Google Scholar
  37. 37.
    W. Hamilton, J. Theor. Biol. 7, 1 (1964).Google Scholar
  38. 38.
    R. Axelrod and W. D. Hamilton, Science 211, 1390 (1981).Google Scholar
  39. 39.
    M. Nowak, Science 314, 1560 (2006).Google Scholar
  40. 40.
    J. Hofbauer and K. Sigmund, Evolutionary games and population dynamics. (Cambridge University Press, Cambridge, UK, 1998).Google Scholar
  41. 41.
    J. Hofbauer and K. Sigmund, Bull. Am. Math. Soc. 40, 479 (2003).Google Scholar
  42. 42.
    M.A. Nowak and K. Sigmund, Nature 355, 250 (1992).Google Scholar
  43. 43.
    M.A. Nowak and K. Sigmund, Acta Applicandae Math, 20, 247 (1990).Google Scholar
  44. 44.
    R. Axelrod, The complexity of cooperation: agent-based models of competition and collaboration. (Princeton University Press., Princeton, NJ, 1997).Google Scholar
  45. 45.
    M.A. Nowak, Evolutionary dynamics: exploring the equations of life. (Harvard University Press., Cambridge, MA, 2006).Google Scholar
  46. 46.
    M. A. Nowak and R. M. May, Nature 359, 826 (1992).Google Scholar
  47. 47.
    M. Nowak, S. Bonhoeffer, and R. May, Int. J. Bifurcation Chaos, 4, 33 (1994).Google Scholar
  48. 48.
    M.A. Nowak, S. Bonhoeffer, and R.M. May, Proc. Natl. Acad. Sci. USA 91, 4877 (1994).Google Scholar
  49. 49.
    F. C. Santos and J. M. Pacheco, Phys. Rev. Lett. 95, 098104 (2005).Google Scholar
  50. 50.
    F. C. Santos, F. J. Rodrigues, and J. M. Pacheco, Proc. Biol. Sci. 273, 51 (2006).Google Scholar
  51. 51.
    F. C. Santos and J. M. Pacheco, J. Evol. Biol. 19, 726 (2006).Google Scholar
  52. 52.
    F. C. Santos, J. M. Pacheco, and T. Lenaerts, Proc. Natl. Acad. Sci. USA 103, 3490 (2006).Google Scholar
  53. 53.
    H. Ohtsuki, E. Lieberman C. Hauert, and M. A. Nowak, Nature 441 502 (2006).Google Scholar
  54. 54.
    G. Abramson and M. Kuperman, Phys. Rev. E 63, 030901(R) (2001).Google Scholar
  55. 55.
    V. M. Eguíluz, M. G. Zimmermann, C. J. Cela-Conde, and M. San Miguel, American Journal of Sociology 110, 977 (2005).Google Scholar
  56. 56.
    T. Killingback and M. Doebeli, Proc. R. Soc. Lond. 263, 1135 (1996).Google Scholar
  57. 57.
    A. Szolnoki, M. Perc, and Z. Danku, Physica A, 387, 2075 (2008).Google Scholar
  58. 58.
    J. Vukov and G. Szabóand A. Szolnoki, Phys. Rev. E 77, 026109 (2008).Google Scholar
  59. 59.
    J. Gómez-Gardeñes, M. Campillo, L. M. Floría, and Y. Moreno, Phys. Rev. Lett. 98, 108103 (2007).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Julia Poncela Casasnovas
    • 1
  1. 1.University of ZaragozaZaragozaSpain

Personalised recommendations