Temporal Logics Modeling Logical Uncertainty, Local and Global Chance Discovery

Part of the Studies in Computational Intelligence book series (SCI, volume 423)

Abstract

The paper develops a logical framework for studying Chance Discovery and Uncertainty. We investigate a special linear temporal logic \({\cal T}{\cal L}^{\cal Z}_{{\cal D}{\cal U}}\) with operations UNTIL and NEXT, which combines operations of the linear temporal logic LTL, the operation for discovery (variations of chance discovery – CD) and operation for logical uncertainty. We distinguish local and global discovery using approach of temporal logic. Our main aim is to solve problems of satisfiability and decidability for \({\cal T}{\cal L}^{\cal Z}_{{\cal D}{\cal U}}\). Our principal result is found algorithm which checks if any given formula is true in \({\cal T}{\cal L}^{\cal Z}_{{\cal D}{\cal U}}\) (which implies that \({\cal T}{\cal L}^{\cal Z}_{{\cal D}{\cal U}}\) is decidable, and the satisfiability problem for \({\cal T}{\cal L}^{\cal Z}_{{\cal D}{\cal U}}\) is solvable). In the final part of the chapter we consider the case of non-linear temporal logics based on just reflexive and transitive time flow (which does not implement operations UNTIL and NEXT) with interpretations of Chance Discovery and Uncertainty. Such logics are also decidable.

Keywords

linear temporal logic chance discovery uncertainty decidability algorithms Kripke/Hintikka models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, A., Ohsawa, Y. (eds.): Readings in Chance Discovery. International Series on Advanced Intelligence (2005)Google Scholar
  2. 2.
    Abe, A., Hagita, N., Furutani, M., Furutani, Y., Matsuoka, R.: Exceptions as Chance for Computational Chance Discovery. KES Journal (2), 750–757 (2008)Google Scholar
  3. 3.
    Barringer, H., Fisher, M., Gabbay, D., Gough, G.: Advances in Temporal Logic. Applied logic series, vol. 16. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  4. 4.
    Crestani, F., Lalmas, M.: Logic and Uncertainty in Information Retrieval. In: Agosti, M., Crestani, F., Pasi, G. (eds.) ESSIR 2000. LNCS, vol. 1980, p. 179. Springer, Heidelberg (2001), ISBN:3-540-41933-0CrossRefGoogle Scholar
  5. 5.
    de Jongh, D., Veltman, F., Verbrugge, R.: Completeness by construction for tense logics of linear time. In: Troelstra, A.S., Visser, A., van Benthem, J., Veltman, F. (eds.) Liber Amicorum for Dick de Jongh. Institute of Logic, Language and Computation, Amsterdam (2004), http://www.illc.uva.nl/D65/
  6. 6.
    Gabbay, D.M., Hodkinson, I.M.: An axiomatisation of the temporal logic with Until and Since over the real numbers. Journal of Logic and Computation 1, 229–260 (1990)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Hodkinson, I.: Temporal Logic: Mathematical Foundations and Computational Aspects. In: Gabbay, D.M., Reynolds, M.A., Finger, M. (eds.) Temporal Logic and Automata. ch. II, vol. 2, pp. 30–72. Clarendon Press, Oxford (2000)Google Scholar
  8. 8.
    Elvang-Goransson, M., Krause, P.J., Fox, J.: Acceptability of Arguments as Logical Uncertainty. In: Moral, S., Kruse, R., Clarke, E. (eds.) ECSQARU 1993. LNCS, vol. 747, pp. 85–90. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  9. 9.
    Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer (1995)Google Scholar
  10. 10.
    Ohsawa, Y., McBurney, P. (eds.): Chance Discovery. Advanced Information Processing. Springer (2003)Google Scholar
  11. 11.
    Pnueli, A.: The Temporal Logic of Programs. In: Proc. of the 18th Annual Symp. on Foundations of Computer Science, pp. 46–57. IEEE (1977)Google Scholar
  12. 12.
    Rybakov, V.V.: Rules of Inference with Parameters for Intuitionistic logic. Journal of Symbolic Logic 57(3), 912–923 (1992)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Rybakov, V.V.: Admissible Logical Inference Rules. Studies in Logic and the Foundations of Mathematics, vol. 136. Elsevier Sci. Publ., North-Holland (1997)Google Scholar
  14. 14.
    Rybakov, V.V.: Construction of an Explicit Basis for Rules Admissible in Modal System S4. - Mathematical Logic Quarterly 47(4), 441–451 (2001)Google Scholar
  15. 15.
    Rybakov, V.V.: Logical Consecutions in Discrete Linear Temporal Logic. Journal of Symbolic Logic 70(4), 1137–1149 (2005)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Rybakov, V.V.: Logical Consecutions in Intransitive Temporal Linear Logic of Finite Intervals. Journal of Logic Computation 15(5), 633–657 (2005)MathSciNetGoogle Scholar
  17. 17.
    Rybakov, V.: Until-Since Temporal Logic Based on Parallel Time with Common Past. Deciding Algorithms. In: Artemov, S., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 486–497. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Rybakov, V.: Logic of Discovery in Uncertain Situations– Deciding Algorithms. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part II. LNCS (LNAI), vol. 4693, pp. 950–958. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Rybakov, V.: Linear Temporal Logic with Until and Next, Logical Consecutions - Annals of Pure and Applied Logic 155(1), 32–45 (2008)Google Scholar
  20. 20.
    van Benthem, J., Bergstra, J.A.: Logic of Transition Systems. Journal of Logic, Language and Information 3(4), 247–283 (1994)CrossRefGoogle Scholar
  21. 21.
    van Benthem, J.: The Logic of Time. Kluwer (1991)Google Scholar
  22. 22.
    Vardi, M.: Reasoning about the past with two-way automata. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Computing, Mathematics and Digital TechnologyManchester Metropolitan UniversityManchesterUK

Personalised recommendations