Advertisement

Efficient Service Discovery among Heterogeneous Agents Using a Novel Agent Ranking Algorithm

  • Hao Lan Zhang
  • Clement H. C. Leung
  • Chaoyi Pang
  • Xijin Tang
Part of the Studies in Computational Intelligence book series (SCI, volume 423)

Abstract

Discovering and matching services among heterogeneous agents is the fundamental process for agent cooperation and coordination in multi-agent systems. In such a process, numerous service-providing agents are matched against requested criteria. During the matching procedure, an agent is given the chance to discover its new corresponding agents that can provide desirable services. However, in order to solve more complex problems, the number of agents in a multi-agent system is increasing rapidly; therefore making the chance for an efficient and desirable match is decreased. Thus, improving the efficiency of the agent matching process has become an important issue in the multi-agent filed. Utilising an appropriate agent-matching mechanism will enhance agent cooperation and communication efficiency in dealing with complex problems. In this chapter, we develop a new agent-matching algorithm, the Agent-Rank (AR hereafter) algorithm, which ranks service-providing agents according to their contributions to a nominated requesting agent. The AR algorithm improves agent matching process through combining the general ranking scores with the request-based ranking scores. The AR algorithm narrows down the searching targets (services), which is avail to detect some random targets in a chance discovery process.

Keywords

Service discovery agent matching ranking algorithm Multi-agents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biskupski, B., Dowling, J., Sacha, J.: Properties and Mechanisms of Self-Organizing MANET and P2P Systems. ACM Transactions on Autonomous and Adaptive Systems 2(1), 1–34 (2007)CrossRefGoogle Scholar
  2. 2.
    Parunak, H.V.D., Brueckner, S.A., Matthews, R.: Pheromone Learning for Self-Organizing Agents. IEEE Transactions on SMC-A 35(3), 316–326 (2005)Google Scholar
  3. 3.
    Li, X., Montazemi, A.R., Yuan, Y.: Agent-based buddy-finding methodology for knowledge sharing. Information & Management 43, 283–296 (2006)Google Scholar
  4. 4.
    Sycara, K., Widoff, S.: LARKS: Dynamic Matchmaking Among Heterogeneous Software Agents in Cyberspace. In: Autonomous Agents and Multi-Agent Systems, vol. 5, pp. 173–203. Kluwer Academic Publishers (2002)Google Scholar
  5. 5.
    Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated Discovery, Interaction and Composition of Semantic Web services. Journal of Web Semantics 1(1), 27–46 (2003)CrossRefGoogle Scholar
  6. 6.
    Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Journal on Data Semantics 4, 146–171 (2005)Google Scholar
  7. 7.
    Halevy, A.: Answering queries using views: a survey. VLDB Journal 10(4), 270–294 (2001)MATHCrossRefGoogle Scholar
  8. 8.
    Farahat, A., LoFaro, T., Miller, J.C., Rae, G., Ward, L.A.: Authority Rankings from HITS, PageRank, and SALSA: Existence, Uniqueness, and Effect of Initialization? SIAM Journal on Scientific Computing 27(4), 1181–1201 (2006)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order to the web, Technical report, Stanford University, Stanford, CA (1998)Google Scholar
  10. 10.
    Zhang, H.L., Leung, C.H.C., Raikundalia, G.K.: Topological analysis of AOCD-based agent networks and experimental results. Journal of Computer and System Sciences 74, 255–278 (2008)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Zhang, H.L., Leung, C.H.C., Raikundalia, G.K.: Matrix-Agent Framework: A Virtual Platform for Multi-agents. Journal of System Sciences and Systems Engineering 15(4), 436–456 (2006)CrossRefGoogle Scholar
  12. 12.
    Sarne, D., Kraus, S.: Time-Variant Distributed Agent Matching Applications. In: Proc. of AAMAS, vol. 1, pp. 168–175. IEEE CS Press (2004)Google Scholar
  13. 13.
    Kebriaei, H., Majd, V.J., Rahimi-Kian, A.: A New Agent Scheme Using an Ordered Fuzzy Similarity Measure And Game Theory. Computational Intelligence 24(2), 108–121 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Subrahmanian, V., Bonatti, P., et al.: Heterogeneous Agent Systems, pp. 43–59 (2000)Google Scholar
  15. 15.
    Kuhn, N.: Comparing Ranking of Heterogeneous Agentsm. In: Proc. of COOCS, pp. 1–12. ACM Press (1993)Google Scholar
  16. 16.
    Strogatz, S.H.: Exploring complex networks. Nature 410, 440–442 (2001)CrossRefGoogle Scholar
  17. 17.
    Zhang, H.L., Leung, C.H.C., Raikundalia, G.K., He, J.: A Novel Ranking Algorithm for Service Matching Based on Agent Association Graphs. In: Proc. of IEEE ICDM Workshop, pp. 1273–1280. IEEE Press (2010)Google Scholar
  18. 18.
    Bhavsar, V.C., Boley, H., Yang, L.: A Weighted-Tree Similarity Algorithm for Multi-agent Systems in E-business Environments. Computational Intelligence 20(4), 584–602 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Sowa, J.F.: Principles of Semantic Networks? Explorations in the representation of knowledge. Morgan Kaufman Publishers (1991)Google Scholar
  20. 20.
    Padgham, L., Lambrix, P.: Agent Capabilities: Extending BDI Theory. In: Proc. of the 17th AAAI, pp. 68–73. AAAI Press & The MIT Press (2000)Google Scholar
  21. 21.
    Glanzel, W., Schubert, A.: A new classification scheme of science fields and subfields design for scientometric evaluation purpose. Scientometrics 56(3), 357–367 (2003)CrossRefGoogle Scholar
  22. 22.
    Han, J., Kamber, M., Pei, J.: Data Mining: Concept and Techniques, 3rd edn. Morgan Kaufman Publishers (2011)Google Scholar
  23. 23.
    Ganesan, P., Garcia-Molina, H., Widom, J.: Exploiting Hierarchical Domain Structure to Compute Similarity. ACM Transactions on Information Systems 21(1), 64–93 (2003)CrossRefGoogle Scholar
  24. 24.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manage. 24(5), 513–523 (1988)CrossRefGoogle Scholar
  25. 25.
    Hein, J.L.: Discrete Mathematics, pp. 74–140. Jones and Bartlett Publishers (2002)Google Scholar
  26. 26.
    Fellbaum, C. (ed.): WordNet: A Lexical Database for English. MIT Press (1998)Google Scholar
  27. 27.
    Li, Y., Bandar, Z.A., McLean, D.: An approach for measuring semantic similarity between words using multiple information sources. IEEE Transaction on Knowledge and Data Engineering 15(4), 871–882 (2003)CrossRefGoogle Scholar
  28. 28.
    Zhang, H.L., Leung, C.H.C., Tang, X.: Discovering and Matching Service Providers among Heterogeneous Agents. In: Proc. of IJCAI Workshop, pp. 27–32 (2011)Google Scholar
  29. 29.
    Abe, A., Ohsawa, Y. (eds.): Readings in Chance Discovery. International Series on Advanced Intelligence (2005)Google Scholar
  30. 30.
    McBurney, P., Ohsawa, Y. (eds.): Chance Discovery. Advanced Information Processing (2003), ISBN 3-540-00549-8Google Scholar
  31. 31.
    Ohsawa, Y., Nishihara, Y.: Innovators’ Marketplace: Using Games to Activate and Train Innovators. Springer (forthcoming, 2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hao Lan Zhang
    • 1
  • Clement H. C. Leung
    • 2
  • Chaoyi Pang
    • 3
  • Xijin Tang
    • 4
  1. 1.IS DisciplineNIT, Zhejiang UniversityNingboChina
  2. 2.Hong Kong Baptist UniversityKowloon TongHong Kong
  3. 3.The Australian E-health Research CentreCSIROHerstonAustralia
  4. 4.Chinese Academy of ScienceBeijingChina

Personalised recommendations