High Capacity Lossless Semi-fragile Audio Watermarking in the Time Domain

  • Sunita V. Dhavale
  • R. S. Deodhar
  • L. M. Patnaik
Part of the Advances in Intelligent Systems and Computing book series (volume 167)


A blind high capacity lossless semi-fragile audio watermarking algorithm based on the statistical quantity related to the correlation among the audio sample values is proposed. Time domain embedding is used to reduce the computational time in searching the synchronization codes. The watermark is embedded into the non-silent high energy frames (HEF) to take advantage of the perceptual properties of the Human Auditory System (HAS) and to improve the transparency of the digital watermark. The Offset value used for embedding is made adaptive to the required SNR for the final watermarked audio signal. The watermark can be removed using a secret watermarking key with only minimal remaining distortion. The method proposed is media format independent and it can be used with lossy compression. Both subjective and objective tests reveal that the proposed watermarking scheme maintains high audio quality and is simultaneously highly robust to pirate attacks, including MP3 compression, cropping, time shifting, filtering, re-sampling, and re-quantization., and re-quantization.


Audio watermarking digital rights management Lossless Reversible Self Synchronization Time Domain Semi-fragile Blind 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cvejic, N., Seppanen, T.: Audio watermarking: requirement, algorithms, and benchmarking. In: Digital Watermarking for Digital Media, pp. 135–181. IGI Global Information Science Publishing, Pennsylvania (2005)CrossRefGoogle Scholar
  2. 2.
    Acevedo, A.: Audio watermarking: properties, techniques and evaluation. In: Multimedia Security: Steganography and Digital Watermarking Techniques for Protection of Intellectual Property, pp. 75–125. IGI Global (Idea Group Publishing), Pennsylvania (2005)Google Scholar
  3. 3.
    Wu, S., Huang, J., Huang, D., Shi, Y.Q.: Self-Synchronized Audio Watermark in DWT Domain. In: Proceedings of the International Symposium in Circuits and Systems, ISCAS 2004, vol. 5, pp. 712–715 (2004)Google Scholar
  4. 4.
    Bassia, P., Pitas, I., Nikolaidis, N.: Robust Audio Watermarking in the Time domain. IEEE Transactions on Multimedia 3(2) (June 2001)Google Scholar
  5. 5.
    Feng, J.B., Lin, I.C., Tsai, C.S., Chu, Y.P.: Reversible watermarking: current status and key issues. International Journal of Network Security 2(3), 161–171 (2006)Google Scholar
  6. 6.
    Van der Veen, M., Bruekers, F., Van Leest, A., Cavin, S.: High capacity reversible watermarking for audio. In: Proc. SPIE, vol. 5020, pp. 1–11 (2003)Google Scholar
  7. 7.
    Loytynoja, M., Cvejic, N., Seppanen, T.: Audio Protection with Removable Watermarking. In: ICICS (2007)Google Scholar
  8. 8.
    Dhavale, S.V., Deodhar, R.S., Patnaik, L.M.: Walsh Hadamard Transform based Robust Blind Watermarking for Digital Audio Copyright Protection. In: International Conference on Computational Intelligence and Information Technology, CIIT, Pune (November 2011)Google Scholar
  9. 9.
    Kang, H., Jung, S.-H.: An Efficient Audio Watermark Extraction in Time Domain. International Journal of Information Processing Systems 2(1) (2006)Google Scholar
  10. 10.
    Mariko, R.M.N., Kurkoski, N.B., Yamaguchi, K.: High Payload Audio Watermarking: toward Channel Characterization of MP3 Compression. Journal of Information Hiding and Multimedia Signal Processing 2(2) (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Sunita V. Dhavale
    • 1
  • R. S. Deodhar
    • 1
  • L. M. Patnaik
    • 1
  1. 1.Defence Institute of Advanced TechnologyPuneIndia

Personalised recommendations