Face Detection Using HMM –SVM Method

  • Nupur Rajput
  • Pranita Jain
  • Shailendra Shrivastava
Part of the Advances in Intelligent Systems and Computing book series (volume 167)

Abstract

This paper proposes a method for face detection and recognition using Modified Hidden Markov Model (HMM) and Support Vector Machine (SVM). It is a two layer architecture system that identifies all image regions which contain face or non-face. At the first stage, the Kernel HMM classifies input pattern into three classes: a face class, undecided class or non-face class. In the final stage, SVM detects the face class or non-face class if any sub-image falsely judged as undecided class. This system alleviates the problem of false positive rate. The experimental result shows that the proposed approach outperforms some of the existing face detection methods and we have compared various face detection method.

Keywords

Face detection Support Vector Machine Hidden Markov Model Kernel HMM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hanumantha Reddy, T.: Face detection using modified FDA-SVM method. International Journal of Machine Intelligence 1(2), 26–29 (2009) ISSN: 0975-2927Google Scholar
  2. 2.
    Face detection and recognition using hidden Markov model: central for Image prosseing model school of electrical and computer science engineering. Ara. v nafin GA30332Google Scholar
  3. 3.
    Burges, C.J.C.: Data Mining Knowledge Discovery 2, 121–167 (1998)CrossRefGoogle Scholar
  4. 4.
    Malon, C., Uchida, Suzuki, M.: PRL 29, 1326–1332 (2008)CrossRefGoogle Scholar
  5. 5.
    Tax, D.M.J., Duin, R.P.W.: PRL 20(11), 1191–1199 (1999)CrossRefGoogle Scholar
  6. 6.
    Nefian, A.V., Hayes, M.H.: Hidden Markov models for face recognition. In: ICASSP 1998, pp. 2721–2724 (1998)Google Scholar
  7. 7.
    Samaria, F., Young, S.: HMM based architecture for face identification. Image and Computer Vision 12, 537–583 (1994)CrossRefGoogle Scholar
  8. 8.
    Tang, F., Chen, M., Wang, Z.: JSEE 17(1), 200–205 (2006)MathSciNetMATHGoogle Scholar
  9. 9.
    Rabiner, L., Huang, B.: Fundamentals of speech recognition. Prentice-Hall, Englewood Cliffs (1993)Google Scholar
  10. 10.
    Heisele, B., Ho, P., Wu, J., Poggio, T.: CVIU 91, 6–21 (2003)Google Scholar
  11. 11.
    Geetha, A., Ramalingam, V., Palanivel, S., Palanippan, B.: Expert System with Applications 36(1), 303–308 (2009)CrossRefGoogle Scholar
  12. 12.
    Sahbi, H., Boujemaa, N.: 16th International Conference on Pattern Recognition in IEEE Xplore, pp. 359–362 (2002)Google Scholar
  13. 13.
    Ng, J., Gong, S.: Image and Vision Computing 20(5-6), 359–368 (2002)CrossRefGoogle Scholar
  14. 14.
    Muller, K.R., Mika, S., Ratsch, M., Tsuda, K., Scholkopf, B.: IEEE Trans. on NN 12(2), 181–201 (2001)CrossRefGoogle Scholar
  15. 15.
    Tang, F., Chen, M., Wang, Z.: JSEE 17(1), 200–205 (2006)MathSciNetMATHGoogle Scholar
  16. 16.
    Sugiyama, M.: 23rd International Conference on Machine Learning, pp. 905–912 (2006)Google Scholar
  17. 17.
    Abeni, P., Baltatu, M., D’Alessandro, R.: 3rd Canadian Conference on Computer and Robot Vision, vol. 42 (2006)Google Scholar
  18. 18.
    Shih, P., Liu, C.: PR 39(2), 260–272 (2006)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Nupur Rajput
    • 1
  • Pranita Jain
    • 1
  • Shailendra Shrivastava
    • 1
  1. 1.Smrat Ashok Technological InstituteVidishaIndia

Personalised recommendations