Modified Grøstl: An Efficient Hash Function

  • Gurpreet Kaur
  • Vidyavati S. Nayak
  • Dhananjoy Dey
  • S. K. Pal
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (volume 167)


The cryptographic hash function Grøstl is one of the five finalists of SHA-3 competition organized by US National Institute of Standards and Technology (NIST). In this paper we propose a modified Grøstl-256 hash algorithm, which is 1.2 times faster than Grøstl-256 and as secure as Grostl-256. We further show that the modified Grøstl performs equally well as the original one when compared against standard metrics that are used to evaluate hash functions. A prototype tool developed to compare and evaluate the modified and the original Grostl-256 algorithm has been used for this purpose.


Cryptographic hash function fixed-point attack Grøstl length extension attack SHA-3 Competition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Menezes, A., Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press (1997),
  2. 2.
    Rivest, R.: The MD5 Digest Algorithm, Network Working Group Request for Comments: 1321 (1992),
  3. 3.
    Federal Information Processing Standards Publication 180-1: Secure hash standard (1996)Google Scholar
  4. 4.
    Federal Information Processing Standards Publication 180-2: Secure hash standard (2002)Google Scholar
  5. 5.
    NIST Brief Comments: Recent Cryptanalytic Attacks on Secure Hashing Functions and the Continued Security Provided by SHA-1,
  6. 6.
    Gilbert, H., Handschuh, H.: Security Analysis of SHA-256 and Sisters. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 175–193. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    National Institute of Standards and Technology, Cryptographic Hash Project SHA-3 contest (2011),
  8. 8.
    Aumasson, J.P., Henzen, L., Meier, W., Phan, R.: SHA-3 Proposal Blake. Candidate to the NIST Hash Competition (2011)Google Scholar
  9. 9.
    Gauravaram, P., Knudsen, L., Matusiewicz, K., Mendel, F., Rechberger, C., Schlaffer, M., Thomsen, S.: Grøstl - a SHA-3 candidate. Submission to NIST, Round-3 (2011),
  10. 10.
    Wu, H.: JH. Candidate to the NIST Hash Competition (2011)Google Scholar
  11. 11.
    Bertoni, G., Daemen, J., Peeters, M., Assche, G.: Keccak. Candidate to the NIST Hash Competition (2011)Google Scholar
  12. 12.
    Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: Skein. Candidate to the NIST Hash Competition (2008)Google Scholar
  13. 13.
    Daemen, J., Rijmen, V.: AES Proposal: Rijndael. AES Algorithm Submission (1999),
  14. 14.
    Dey, D., Shrotriya, N., Sengupta, I.: R-hash: Hash Function Using Random Quadratic Polynomials Over GF(2),
  15. 15.
    Bozhan, S., Wenling, W., Shuang, W., Dong, L.: Near-Collisions on the Reduced-Round Compression Functions of Skein and BLAKE,
  16. 16.
    Karras, D., Zorkadis, V.: A Novel Suite of Tests for Evaluating One-Way Hash Functions for Electronic Commerce Application. IEEE (2000)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Gurpreet Kaur
    • 1
  • Vidyavati S. Nayak
    • 1
  • Dhananjoy Dey
    • 2
  • S. K. Pal
    • 2
  1. 1.Dept. of CEDefence Institute of Advance Technology (DU)PuneIndia
  2. 2.Scientific Analysis GroupDRDODelhiIndia

Personalised recommendations