Advertisement

Universal Steganalysis Using Contourlet Transform

  • V. Natarajan
  • R. Anitha
Part of the Advances in Intelligent Systems and Computing book series (volume 167)

Abstract

This paper proposes a new universal steganalysis method based on contourlet transform with high detection rate. An important aspect of this paper is that it uses the minimum number of features in the transform domain and gives a better accuracy than many of the existing steganalysis methods. Only five features have been extracted from the contourlet transformed image and a back propagation neural network classifier has been used to classify whether the given image is stego image or cover. The efficiency of the proposed method is demonstrated through experimental results. Also its performance is compared with the state of the art wavelet based steganalyzer (WBS), Feature based steganalyzer (FBS) and Contourlet based steganalyzer (CBS). The results show significantly high performance of our method.

Keywords

Steganography Steganalysis Contourlet transform Structural similarity measure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fridrich, J., Goljan, M.: Practical: Steganalysis of digital images-state of the art. In: Proceedings of SPIE, Security and Watermarking Multimedia Content IV, vol. 4675, pp. 1–13 (2002)Google Scholar
  2. 2.
    McBride, B.T., Peterson, G.L., Gustafson, S.C.: A new blind method for detecting novel steganography. Digit Invest 2, 50–70 (2005)CrossRefGoogle Scholar
  3. 3.
    Johnson, N.F, Jajodia, S.: Steganalysis: the investigation of hidden information. In: Proc. IEEE Information Technology Conference, Syracuse, NY (1998)Google Scholar
  4. 4.
    Fridrich, J., Goljan, M.: Practical steganalysis of digital images state of the art. In: Proc. SPICE Photonics West, Electronic Imaging (2002), Security and Watermarking of Multimedia Contents, San Jose, CA, vol. 4675, pp. 1–13 (January 2002)Google Scholar
  5. 5.
    Avcibas, I., Memon, N.D., Sankur, B.: Steganalysis of watermarking techniques using image quality metrics. In: Proceedings of SPIE, Security and Watermarking of Multimedia Content III, vol. 4314, pp. 523–531. SPIE, New York (2001)Google Scholar
  6. 6.
    Avcibas, I., Memon, N., Sankur, B.: Steganalysis using image quality metrics. IEEE Trans. Image Process. 12, 221–229 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Nissar, A., Mir, A.H.: Classification of steganalysis techniques: A study. Digital Signal Processing, 1758–1770 (2010)Google Scholar
  8. 8.
    Farid, H.: Detecting hidden messages using higher-order statistical models. In: Proceedings of IEEE International Conference on Image Processing, New York, USA, vol. 2, pp. 905–908 (2002)Google Scholar
  9. 9.
    Lyu, S.W., Farid, H.: Steganalysis using higher-order image statistics. IEEE Trans. Inf. Forensic Security 1, 111–119 (2006)CrossRefGoogle Scholar
  10. 10.
    Xuan, G., Shi, Y.Q., Gao, J., Zou, D., Yang, C., Zhang, Z., Chai, P., Chen, C.-H., Chen, W.: Steganalysis Based on Multiple Features Formed by Statistical Moments of Wavelet Characteristic Functions. In: Barni, M., Herrera-Joancomartí, J., Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005. LNCS, vol. 3727, pp. 262–277. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Lie, W.N., Lin, G.S.: A feature-based classification technique for blind image stegananlysis. IEEE Trans. Multimeda 7, 1007–1083 (2005)CrossRefGoogle Scholar
  12. 12.
    Sajedi, H., Jamzad, M.: A Steganalysis method based on contourlet transform coefficients. In: International Conference of Intelligent Information Hiding and Multimedia Signal Processing (2008)Google Scholar
  13. 13.
    Sajedi, H., Jamzad, M.: ContSteg: Contourlet-Based Steganography Method, Wireless Sensor Network, vol. 1(3), pp. 163–170. Scientific Research Publishing (SRP), California (2009)Google Scholar
  14. 14.
    Do, M.N., Vetterli, M.: Contourlets: a directional multiresolution image representation. In: Proc. of IEEE Int. Conf. on Image Process., Piscataway, NJ, vol. 2002(9), pp. 357–360 (2002)Google Scholar
  15. 15.
    Do, M.N., Vertterli, M.: The Contourlet Transform: An Efficient Directional Multiresolution Image Representation. IEEE Transaction on Image Processing 14(12), 2091–2106 (2006)CrossRefGoogle Scholar
  16. 16.
    Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trand. Commun. 31(4), 532–540 (1983)CrossRefGoogle Scholar
  17. 17.
    Bamberger, R.H., Smith, M.J.T.: A filter bank for the directional decomposition of images: theory and design. IEEE Trans. Signal Process. 4, 882–893 (1992)CrossRefGoogle Scholar
  18. 18.
    Yazdi, M., Mahyari, A.G.: A new 2D fractal dimension estimation based on Contourlet transform for texture segmentation. The Arabian Journal for Science and Engineering 35(13), 293–317 (2010)Google Scholar
  19. 19.
    Mosleh, A., Zargari, F., Azizi, R.: Texture Image Retrieval Using Contourlet Transfrom. In: International Symposium on Signal, Circuits and Systems (2009)Google Scholar
  20. 20.
    Do, M.N., Vetterli, M.: Directional multiscale modeling of images using Contourlet transform. IEEE Transactions on Image Processing 15(6), 1610–1620 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Yang, C.L., Wang, F., Xiao, D.: Contourlet Transform based Structural Similarity for image quality assessment. Intelligent Computing and Intelligent Systems (2009)Google Scholar
  22. 22.
    Fridrich, J.: Feature-Based Steganalysis for JPEG Images and Its Implications for Future Design of Steganographic Schemes. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 67–81. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ApplicationsPSG College of TechnologyCoimbatoreIndia

Personalised recommendations