Theory of Carrier and Heat Transport in Homogeneously Doped Silicon

  • Janusz Bogdanowicz
Part of the Springer Theses book series (Springer Theses)


In this chapter, we assume that a supra-bandgap modulated pump laser and a supra-bandgap constant probe laser shine on a homogeneously doped silicon sample with respective irradiances \(\Pi _\text{ pump}(x,y,t)\) and \(\Pi _\text{ probe}(x,y)\). We look at the free electron, free hole and temperature distributions generated in the sample.


Fundamental Mode Thermal Wave Decay Length Auger Recombination Ambipolar Diffusivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.E. Wagner, A. Mandelis, Nonlinear photothermal modulated optical reflectance and photocurrent phenomena in crystalline semiconductors. 1. theoretical. Semicond. Sci. Technol. 11(3), 289–299 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    J. Opsal, Thermal and plasma waves in semiconductors. Rev Prog. Quant. Nondestruct. Evaluation 6B, 1339–1346 (1987)Google Scholar
  3. 3.
    K. Kells, General Electrothermal Semiconductor Device, Simulation (Springer, Germany, 1994)Google Scholar
  4. 4.
    S.K. Sundaram, E. Mazur, Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat. Mater. 1(4), 217–24 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer, Wien, 1984)Google Scholar
  6. 6.
    A.H. Marshak, C.M. Vanvliet, Electrical-current and carrier density in degenerate materials with nonuniform band-structure. Proc. IEEE 72(2), 148–164 (1984). ISSN 0018–9219Google Scholar
  7. 7.
    F. Dortu, J. Bogdanowicz, T Clarysse, W. Vandervorst, Impact of band gap narrowing and surface recombination on photoelectrothermal modulated optical reflectance power curves. J. Vac. Sci. Technol. B 26, 322–332 (2008)Google Scholar
  8. 8.
    S.M. Sze, Physics of Semiconductor Devices, 3rd edn. (Wiley-Interscience, New York, 2006)Google Scholar
  9. 9.
    J. McKelvey, Solid-State and Semiconductor Physics, Chap. 10 (Harper& Row, New York, 1966)Google Scholar
  10. 10.
    H.M. Vandriel, J.F. Young, Many-body effects and the diffusion of high-density electrons and holes in semiconductors. J. Phys. C 15(3), L31–L35 (1982)ADSCrossRefGoogle Scholar
  11. 11.
    J.F. Young, H.M. Vandriel, Ambipolar diffusion of high-density electrons and holes in ge, si, and gaas—many-body effects. Phys. Rev. B 26(4), 2145–2158 (1982). ISSN 0163–1829Google Scholar
  12. 12.
    A. Schenk, Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulation. J. Appl. Phys. 84(7), 3684–3695 (1998)Google Scholar
  13. 13.
    F. Dortu, Low-Frequency Modulated Optical Reflectance for the One-Dimensional Characterization of Ultra-Shallow Junctions. PhD thesis, Katholieke Universiteit Leuven, 2009Google Scholar
  14. 14.
    F. Dortu, J. Bogdanowicz, Fsem, a semiconductor drift-diffusion equations solver using the finite elements method (fem), GNU GPL, (2005),
  15. 15.
    F. Dortu, T. Clarysse, R. Loo, B. Pawlak, R. Delhougne, W. Vandervorst, Progress in the physical modeling of carrier illumination. J. Vac. Sci. Technol. B 24(3), 1131–1138 (2006)Google Scholar
  16. 16.
    A. Mandelis, M. Nestoros, C. Christofides, Thermoelectronic-wave coupling in laser photothermal theory of semiconductors at elevated temperatures. Opt. Eng. 36(2), 459–68 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    A. Mandelis, Diffusion-Wave Fields: Mathematical Methods and Green Functions, 1st edn. (Springer, New York, 2001)Google Scholar
  18. 18.
    R.A. Smith, Wave Mechanics of Crystalline Solids (Chapman and Hall, London, 1969)Google Scholar
  19. 19.
    T. Yasuda, D.E. Aspnes, Optical-standard surfaces of single-crystal silicon for calibrating ellipsometers and reflectometers. Appl. Opt. 33(31), 7435–7438 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    D.E. Aspnes, A.A. Studna, E. Kinsbron, Dielectric-properties of heavily doped crystalline and amorphous-silicon from 1.5 to 6.0 ev. Phys. Rev. B 29(2), 768–779 (1984)Google Scholar
  21. 21.
    D.B.M. Klaassen, A unified mobility model for device simulation. 1. model-equations and concentration-dependence. Solid-State Electron. 35(7), 953–959 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    J. Linnros, V. Grivickas, Carrier-diffusion measurements in silicon with a fourier-transient-grating method. Phys. Rev. B 50(23), 16943–16955 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    Y.P. Varshni, Band-to-band radiative recombination in groups iv, vi and iii-v semiconductors (i). Phys. Stat. Solidi 19, 459–514 (1967)ADSCrossRefGoogle Scholar
  24. 24.
    M.E. Brinson, W. Dunstan, Thermal conductivity and thermoelectric power of heavily doped n-type silicon. J. Phys. C 3, 483–491 (1970)ADSCrossRefGoogle Scholar
  25. 25.
    J. Bogdanowicz, F. Dortu, T. Clarysse, W. Vandervorst, D. Shaughnessy, A. Salnik, L. Nicolaides, J. Opsal, Advances in optical carrier profiling through high-frequency modulated optical reflectance. in Proceedings of The Insight Workshop , 2007)Google Scholar
  26. 26.
    H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Oxford University Press, Oxford, 1986)Google Scholar
  27. 27.
    R.E. Collins, Mathematical Methods for Physicists and Engineers (Reinhold Book Corp., New York, 1968)Google Scholar
  28. 28.
    R.N. Bracewell, The Fourier Transform and its Applications (McGraw-Hill, New York, 1986)Google Scholar
  29. 29.
    M. Abramowitz, I. Stegun, Handbook of mathematical functions (Dover, New York, 1964)Google Scholar
  30. 30.
    M. Heath, Scientific Computing, an Introductory Survey (McGraw-Hill, New York, 1997)Google Scholar
  31. 31.
    J. Bogdanowicz, F. Dortu, T. Clarysse, W. Vandervorst, A. Salnik. Electrothermal theory of photomodulated optical reflectance on active doping profiles in silicon. J. Appl. Phys. 108(10), 104908 (2010)Google Scholar
  32. 32.
    Synopsys. Medici, (2006),
  33. 33.
    Synopsys. Sentaurus device, (2006),

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.IMECLeuvenBelgium

Personalised recommendations