Skip to main content
  • 1433 Accesses

Abstract

This chapter focuses on the dynamic fracture of piezoelectric materials. The problems considered include: the scattering of Love wave caused by interfacial cracks in piezoelectric layered structures (Section 1); the electroelastic fields produced by moving cracks (Section 2); the transient response of cracked piezoelectric under impact electromechanical loads (Section 3); the dynamic crack propagation of a Mode III crack in piezoelectric materials (Section 4). Some numerical results are provided to show the influence of the inertial effect on the dynamic fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auld, BA., 1990a. Acoustic Fields and Waves in Solids, vol. I. New York: Wiley

    Google Scholar 

  • Auld, BA., 1990b. Acoustic Fields and Waves in Solids, vol. II. New York: Wiley

    Google Scholar 

  • Bleustein JL. 1968. A new surface wave in piezoelectric materials. Appl. Phys. lett. 13: 412–413

    Article  Google Scholar 

  • Chen ZT, Meguid SA, 2000. The transient response of a piezoelectric strip with a vertical crack under electromechanical impact load. Int J Solids Struct 37: 6051–6062

    Article  MATH  Google Scholar 

  • Chen ZT, Yu SW, 1997. Antiplane Yoffe crack problem in piezoelectric materials. Int. J. Fract. 84: L41–L45

    Google Scholar 

  • Chen ZT, Yu SW, 1998a. Current research on the damage and fracture mechanics of piezoelectric materials. Advances In Mechanics. 29: 187–196. (In Chinese)

    MATH  Google Scholar 

  • Chen ZT, Yu SW, 1998b. Crack-tip field in piezoelectric media under antiplane impact. Chinese Science Bulletin. 42: 1613–1617. (In Chinese)

    Google Scholar 

  • Dascalu C, Maugin GA, 1995. On the dynamic fracture of piezoelectric materials. Quart. J. Mech. Appl. Math. 48: 237–255

    Article  MathSciNet  MATH  Google Scholar 

  • Du JK, Shen YP, Wang X, 2002. Scattering of anti-plane shear waves by a partially debonded piezoelectric circular cylindrical inclusion. Acta Mech. 158: 169–183

    Article  MATH  Google Scholar 

  • Erdogan F, Gupta GD, 1972. Numerical solution of singular integral-equations, Quart. Appl. Math. 29: 525–534

    MathSciNet  MATH  Google Scholar 

  • Fan TY, 2003. Foundation of fracture theory. Science Press, Beijing. (In Chinese)

    Google Scholar 

  • Freund LB, 1972. Crack-propagation in an elastic solid subjected to general loading.1. constant rate of extension. J. Mech. Phys. Solids 20: 120–140

    Google Scholar 

  • Gao CF, Zhao YT, Wang MZ, 2001. Moving antiplane crack between two dissimilar piezoelectric media. Int J Solids Struct 38: 9331–9345

    Article  MATH  Google Scholar 

  • Gu B, Yu SW, Feng XQ, 2002a. Elastic wave scattering by an interface crack between a piezoelectric layer and an elastic substrate. Int. J. Fract. 116: L29–L34

    Article  Google Scholar 

  • Gu B, Yu SW, Feng XQ, et al., 2002b. Scattering of love waves by an interface crack between a piezoelectric layer and an elastic substrate. Acta Mech. Solida Sinica 15: 111–118

    Google Scholar 

  • Gulyaev YV, 1969. Electroacoustic surface waves in solids. Sov. Phys. JETP Lett. 9: 37–38

    Google Scholar 

  • Hou MS, Qin XQ, Bian WF, 2001. Energy release rate and bifurcation angles of piezoelectric materials with antiplane moving crack. Int. J. Fract. 107: 297–306

    Article  Google Scholar 

  • Huang GL, Wang XD, 2006. On the dynamic behaviour of interfacial cracks between a piezoelectric layer and an elastic substrate. Int. J. Fract. 141: 63–73

    Article  MATH  Google Scholar 

  • Kwon JH, Lee KY, Kwon SM, 2000. Moving crack in piezoelectric ceramic strip under anti-plane shear loading. Mech. Res. Commun. 27: 327–332

    Article  MATH  Google Scholar 

  • Kwon SM, Lee KY, 2001b. Transient response of a rectangular piezoelectric medium with a center crack. Eur. J. Mech. A-Solids 20: 457–468

    Article  MATH  Google Scholar 

  • Kwon SM, Lee KY, 2001c. Edge cracked piezoelectric ceramic block under electromechanical impact loading. Int. J. Fract. 112: 139–150

    Article  Google Scholar 

  • Li SF, Mataga PA, 1996a. Dynamic crack propagation in piezoelectric materials.1. Electrode solution, J. Mech. Phys. Solids 44: 1799–1830

    Article  MathSciNet  MATH  Google Scholar 

  • Li SF, Mataga PA, 1996b. Dynamic crack propagation in piezoelectric materials.2. Vacuum solution, J. Mech. Phys. Solids 44: 1831–1866

    Article  MathSciNet  MATH  Google Scholar 

  • Li XF, Fan TY, 2002. Transient analysis of a piezoelectric strip with a permeable crack under anti-plane impact loads. Int. J. Eng. Sci. 40: 131–143

    Article  Google Scholar 

  • Li XF, Tang GJ, 2003b. Transient response of a piezoelectric ceramic strip with an eccentric crack under electromechanical impacts. Int. J. Solids Struct. 40: 3571–3588

    Article  MATH  Google Scholar 

  • Lothe J, Barnett DM, 1976. Integral formalism for surface waves in piezoelectric crystals. Existence considerations. J. Appl. Phys. 47: 1799–1807

    Article  Google Scholar 

  • Meguid SA, Wang XD, 1998. Dynamic antiplane behavior of interacting cracks in a piezoelectric medium. Int. J. Fract. 91, 391–403

    Article  Google Scholar 

  • Muskhelishvili, IN, 1963. Some Basic Problems of the Mathematical Theory of Elasticity. The Netherlands: Noordhoff

    MATH  Google Scholar 

  • Narita F, Shindo Y, 1998b. Dynamic anti-plane shear of a cracked piezoelectric ceramic. Theore. Appl. Fract. Mech. 29: 169–180

    Article  Google Scholar 

  • Shen SP, Nishioka T, Hu SL, 2000. Crack propagation along the interface of piezoelectric biomaterial. Theore. Appl. Fract. Mech. 34: 185–203

    Article  Google Scholar 

  • Shin JW, Kwon SM, Lee KY, 2001. An eccentric crack in a piezoelectric strip under anti-plane shear impact loading. I Int J Solids Struct 38: 1483–1494

    Article  MATH  Google Scholar 

  • Shindo Y, Minamida K, Narita F, 2002. Antiplane shear wave scattering from two curved interface cracks between a piezoelectric fiber and an elastic matrix. Smart Mater. Struct. 11: 534–540

    Article  Google Scholar 

  • Shindo Y, Narita F, Ozawa E, 1999. Impact response of a finite crack in an orthotropic piezoelectric ceramic. Acta Mech. 137: 99–107

    Article  MATH  Google Scholar 

  • Shindo Y, Ozawa E., 1990. Dynamic analysis of a piezoelectric material. In: Hsieh, RKT (Ed.), Mechanical Modeling of New, Electromagnetic Materials. Elsevier, Amsterdam, 297–304

    Google Scholar 

  • Sih GC, Chen, EP, 1977. Transient response of cracks to impact loads. In: Mechanics of Fracture, Vol. 4, Elastodynamic Crack Problems (Edited by Sih GC), Noordhoff International Publishers, 1–58

    Google Scholar 

  • Soh AK, Liu JX, Lee, KL et al., 2002. On a moving Griffith crack in anistropic piezoelectric solids. Arch. Appl. Mech, 72: 458–469

    Article  MATH  Google Scholar 

  • Sun K, Zhang FX, 1984. Piezoelectricity. National Defence Industry Press, Beijing. (In Chinese)

    Google Scholar 

  • Wang Q, Quek ST, Varadan VK, 2001. Love waves in piezoelectric coupled solid media. Smart Mater. Struct. 10: 380–388

    Article  Google Scholar 

  • Wang XD, 2001. On the dynamic behaviour of interacting interfacial cracks in piezoelectric media. I. Int. J. Solids Struct. 38: 815–831

    Article  MATH  Google Scholar 

  • Wang XY, Yu SW, 1999. Scattering of SH waves by an arc-shaped crack between a cylindrical piezoelectric inclusion and matrix-II: Far fields. Int. J. Fract. 100: L35–L40

    Google Scholar 

  • Wang XY, Yu SW, 2000. Transient response of a crack in piezoelectric strip subjected to the mechanical and electrical impacts: mode-III problem. Int J Solids Struct 37: 5795–5808

    Article  MATH  Google Scholar 

  • Wang XY, Yu SW, 2001. Transient response of a crack in piezoelectric strip subjected to the mechanical and electrical impacts: mode-I problem. Mech. Mater. 33: 11–20

    Article  Google Scholar 

  • Wang YS, Wang D, 1997. On the application of singular integral equation to the scattering problems of elastic waves by cracks. Advances in Mechanics. 27(1): 39–55. (In Chinese)

    MATH  Google Scholar 

  • Wang ZQ, 1999. Analysis of strip electric saturation model of crack problem in piezoelectric materials. Chinese Journal of Theoretical Applied Mechanics. 31: 311–319. (In Chinese)

    Google Scholar 

  • Yoffe EH, 1951. The moving Griffith crack. Philos. Mag. 42: 739–750

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fang, D., Liu, J. (2013). Dynamic Fracture Mechanics of Piezoelectric Materials. In: Fracture Mechanics of Piezoelectric and Ferroelectric Solids. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30087-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30087-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30086-8

  • Online ISBN: 978-3-642-30087-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics