Chaos in Spatial Attitude Motion of Spacecraft

  • Yanzhu Liu
  • Liqun Chen

Abstract

This chapter treats chaos in spatial attitude motion of spacecraft. The motion of torque-free rigid bodies and gyrostats are discussed in terms of Serret-Andoyer variables, which are introduced to simplify the dynamical models. The influences of the gravitational and magnetic fields on the attitude motion are revisited using the new variables. A rigid body in elliptic orbit and gravitational field, a torque-free rigid body with eccentrically rotating mass, and a magnetic gyrostat in circular orbit acted by gravitational and magnetic torques are discussed with application of Serret-Andoyer variables. The dynamical equations for each model are transformed to an integrable Hamiltonian system with small disturbance. The generalized Melnikov theory is applied to predict transverse heteroclinic points. Poincaré maps are numerically calculated to demonstrate the process from regular to chaotic motions.

Keywords

spatial attitude motion Serret-Andoyer variables rigid body spacecraft generalized Melnikov theory Hamiltonian system Poincaré map 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Serret JA. Mémoire sur l’emploi de la méthode da la variation des arbitraries dans la théorie des mouvements de rotation. Mémoire s de l’académie de science de Paris, 1866, 35, 585–616Google Scholar
  2. [2]
    Andoyer H. Cours de mécanique céleste. Paris: Gauthier-Villars, 1923, 1, 55–56MATHGoogle Scholar
  3. [3]
    Deprit, A. Free rotation of a rigid body studied in the phase plane. Amer. J. Physics, 1967, 35(5), 424–428CrossRefGoogle Scholar
  4. [4]
    Guran A, Tong X, Rimrott FPJ. Instabilities in a spinning axisymmetric rigid satellite, Mech. Res. Comm., 1991, 18(5), 287–291MATHCrossRefGoogle Scholar
  5. [5]
    Kane T R, Barba PM. Attitude stability of a spinning satellite in an elliptic orbit. Journal of Applied Mechanics, 1966, 33, 402–405CrossRefGoogle Scholar
  6. [6]
    Cole JW, Calico RA. Nonlinear oscillations of a controlled periodic system, Journal of Guidance, Control, and Dynamics, 1992, 15(3), 627–633MATHCrossRefGoogle Scholar
  7. [7]
    Beletsky VV, Starostin EL. Regular and chaotic rotations of a satellite in sunlight flux; in: Nonlinearity and Chaos in Engineering Dynamics, Thomson JMT and Bishop SR eds., Wiley, New York. 193–204, 1994Google Scholar
  8. [8]
    Balan R. Horseshoes and nonintegrability in the restricted cases of a spinless axisymmetric rigid body in a central gravitational field, Celestial Mechanics and Dynamical Astronomy, 1995, 63(1), 59–79MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Cheng G, Liu YZ. Chaotic motion of a rigid-body satellite in the magnetic field of the earth. Journal of Shanghai Jiaotong University, 1999, 33, 723–726 (in Chinese)MathSciNetGoogle Scholar
  10. [10]
    Peng JH., Liu YZ. Chaotic attitude motion of a satellite on a Keplerian elliptic orbit. Technische Mechanik, 2000, 20(4), 311–318Google Scholar
  11. [11]
    Kinoshita H. First-order perturbations of the two finite body problem. Publications of the Astronomical Society of Japan, 1972, 24, 423–457MathSciNetGoogle Scholar
  12. [12]
    Cochran J. Effects of gravity-gradient torque on the motion of a triaxial satellite. Celestial Mechanics, 1972, 6, 131–152CrossRefGoogle Scholar
  13. [13]
    Holmes PJ, Marsden JE. Horseshoes and Arnold diffusion for Hamiltonian systems on Lie groups. Indiana University Mathematics Journal, 1983, 32, 273–310MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Gray GL, Kammer DC, Dobson I. Chaos in an attitude maneuver of a damped satellite due to time-periodic perturbations, Advances in the Astronautical Sciences, 1992, 79(1), 593–612Google Scholar
  15. [15]
    Gray GL, Dobson I, Kammer DC. Chaos in a spacecraft attitude maneuver due to timeperiodic perturbations. ASME Journal of Applied Mechanics, 1996, 63(2), 501–508MATHCrossRefGoogle Scholar
  16. [16]
    Gray GL, Dobson I, Kammer DC. Detection of chaotic saddles in an attitude maneuver of a spacecraft containing a viscous damper, Advances in the Astronautical Sciences, 1993, 82(1), 167–184Google Scholar
  17. [17]
    Meehan PA, Asokanthan SF. Chaotic motion in a rotating body with internal energy dissipation, Fields Institute Communications, 1996, 9, 175–202MathSciNetGoogle Scholar
  18. [18]
    Meehan PA, Asokanthan SF. Chaotic motion in a spinning spacecraft with circumferential nutational damper, Nonlinear Dyn., 1997, 12(1), 69–87MATHCrossRefGoogle Scholar
  19. [19]
    Gray GL, Mazzoleni AP, Campbell DR. Chaotic dynamics of a spacecraft with a nearly symmetric flexible appendage and energy dissipation via a nonlinear controller. Advances in the Astronautical Sciences, 1996, 93(2), 1093–1112Google Scholar
  20. [20]
    Gray CL, Mazzoleni AP, Campbell DR. Analytical criterion for chaotic dynamics in flexible satellites with nonlinear controller damping, Journal of Guidance, Control, and Dynamics, 1998, 21(5), 558–565Google Scholar
  21. [21]
    Gray GL, Kammer DC, Dobson I, Miller AJ. Heteroclinic bifurcations in rigid bodies containing internally moving parts and a viscous damper. ASME Journal of Applied Mechanics, 1999, 66(3), 720–728CrossRefGoogle Scholar
  22. [22]
    Miller AJ, Gary GL, Mazzoleni AP. Nonlinear dynamics of a viscously damped spacecraft with a flexible appendage and time-dependent forcing, Advances in the Astronautical Sciences, 1999, 103(2), 2453–2473Google Scholar
  23. [23]
    Miller AJ, Gray GL, Mazzoleni AP. Nonlinear spacecraft dynamics with a flexible appendage, internal damping and moving internal submasses, Journal of Guidance, Control and Dynamics, 2001, 24(3), 605–615CrossRefGoogle Scholar
  24. [24]
    Wiggins S. Global Bifurcations and Chaos: Analytical Methods. Berlin: Springer-Verlag, 1988MATHCrossRefGoogle Scholar
  25. [25]
    Iñarrea M, Lanchares V, Rothos VM, Salas JP. Chaotic rotations of an asymmetric body with time-dependent moments of inertia and viscous drag, International Journal of Bifurcation and Chaos, 2003, 13(2), 393–409MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    Kuang J, Meehan PA, Leung AYT, Tan S. Nonlinear dynamics of a satellite with deployable solar panel arrays, International Journal Non-Linear Mechanics, 2004, 39(7), 1161–1179MATHCrossRefGoogle Scholar
  27. [27]
    Ge ZM, Lee CI, Chen HH, Lee SC. Nonlinear dynamics and chaos control of a damped satellite with partially-filled liquid, Journal of sound and Vibration, 1998, 217, 807–825MathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    Ge ZM. Nonlinear and Chaotic Dynamics of Satellites. Taipei: Gau Lih Book Company, 1999Google Scholar
  29. [29]
    Kuang J, Leung AYT, Tan S. Chaotic attitude oscillations of a satellite filled with a rotation ellipsoidal mass of liquid subject to gravity-gradient torques, Chaos, 2004, 14(1), 111–117MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    Tong X, Rimrott FPJ. Chaotic attitude motion of gyrostat satellites in a central force field, Nonlinear Dynamics, 1993, 4, 269–278Google Scholar
  31. [31]
    Guran A. Chaotic motion of a Kelvin type gyrostat in a circular orbit, Acta Mechanica, 1993, 98(1–4), 51–61MathSciNetMATHCrossRefGoogle Scholar
  32. [32]
    Meehan PA, Asokanthan SF. Nonlinear instabilities in a dual-spin spacecraft with an axial nutational damper, Advances in the Astronautical Sciences, 1996, 93(1), 905–923Google Scholar
  33. [33]
    Tong X, Tabarrok B, Rimrott FPJ. Chaotic motion of an asymmetric gyrostat in the gravitational field, International Journal of Non-Linear Mechanics, 1995, 30(3), 191–203MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    Or AC. Chaotic motions of a dual-spin body, ASME Journal of Applied Mechanics, 1998, 65(1), 150–156CrossRefGoogle Scholar
  35. [35]
    Cheng G, Liu YZ, Peng JH. Chaotic motion of gyrostat in the central gravitational field. Acta Mechanica Sinica, 2000, 32(3), 379–384 (in Chinese)MathSciNetGoogle Scholar
  36. [36]
    Peng, J, Liu, YZ. Chaotic motion of a gyrostat with asymmetric rotor. Int. J. of Nonlinear Mechanics, 2000, 35(3), 431–437MathSciNetMATHCrossRefGoogle Scholar
  37. [37]
    Cheng, G., Liu, YZ. Chaotic motion of an asymmetric gyrostat in the magnetic field of the Earth. Acta Mechnica, 2000, 141(3–4), 125–134MATHCrossRefGoogle Scholar
  38. [38]
    Iñarrea M, Lanchares V. Chaos in the reorientation process of a dual-spin spacecraft with time-dependent moments of inertia. International Journal of Bifurcation and Chaos, 2000, 10(5), 997–1018MathSciNetMATHCrossRefGoogle Scholar
  39. [39]
    Kuang J, Tan S, Leung AYT. Chaotic attitude motion of satellites under small perturbation torques, Journal of Sound and Vibration, 2000, 235(2), 175–200CrossRefGoogle Scholar
  40. [40]
    Kuang J, Tan S, Arichandran K, Leung AYT. Chaotic attitude motion of gyrostat satellite via Melnikov method. International Journal of Bifurcation and Chaos, 2001, 11(5), 1233–1260MathSciNetMATHCrossRefGoogle Scholar
  41. [41]
    Kuang J, Tan S, Arichandran K, Leung AYT. Chaotic dynamics of an asymmetrical gyrostat, International Journal of Non-Linear Mechanics, 2001, 36, 1213–1233MATHCrossRefGoogle Scholar
  42. [42]
    Kuang J, Tan S, Leung AYT. Chaotic attitude tumbling of an asymmetric gyrostat in a gravitational field, Journal of Guidance, Control, and Dynamics, 2002, 25(4), 804–815CrossRefGoogle Scholar
  43. [43]
    Kuang J, Tan S, Leung AYT. On Melnikov’s method in the study of chaotic motions of gyrostat, International Journal of Control, 2002, 75(5), 328–351MathSciNetMATHCrossRefGoogle Scholar
  44. [44]
    Kuang J, Leung AYT, Tan S. Hamiltonian and chaotic attitude dynamics of an orbiting gyrostat satellite under gravity-gradient torques, Physica D, 2003, 186, 1–19MathSciNetMATHCrossRefGoogle Scholar
  45. [45]
    Shirazi KH, Ghaffari-Saadat MH. Near-integrability in a class of asymmetrical gyrostat satellites, International Journal of Nonlinear Sciences and Numerical Simulation, 2002, 3(2), 145–151MathSciNetMATHCrossRefGoogle Scholar
  46. [46]
    Shirazi KH, Ghaffari-Saadat MH. Chaotic motion in a class of asymmetrical Kelvin type gyrostat satellite, International Journal of Non-Linear Mechanics, 2004, 39, 785–793MATHCrossRefGoogle Scholar
  47. [47]
    Shirazi KH, Ghaffari-Saadat MH. Bifurcation and chaos in an apparent-type gyrostat satellite, Nonlinear Dynamics, 2005, 39(3), 259–274MathSciNetMATHCrossRefGoogle Scholar
  48. [48]
    Kinoshita, H. First order perturbations of the two finite body problem. Publications of the Astronautical Society of Japan, 1972, 24, 423–457MathSciNetGoogle Scholar

Copyright information

© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yanzhu Liu
    • 1
  • Liqun Chen
    • 2
  1. 1.Department of Engineering MechanicsShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Department of MechanicsShanghai UniversityShanghaiChina

Personalised recommendations