The Construction of Ambiguous Optimistic Fair Exchange from Designated Confirmer Signature without Random Oracles

  • Qiong Huang
  • Duncan S. Wong
  • Willy Susilo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7293)

Abstract

Ambiguous Optimistic Fair Exchange (AOFE), introduced by Huang et al. in ASIACRYPT 2008, is an extension of OFE that enhances the fairness of the two communicating parties in the exchange of signatures. The first scheme was proven secure without random oracles while its partial signature contains dozens of group elements. Recently, interactive AOFE was introduced and the construction is more practical, where one partial signature only contains three group elements. It is based on the existence of Designated Confirmer Signature (DCS) with a special property where one is able to sample a confirmer signature efficiently from a signer’s signature space. Nevertheless, we note that there are only a few DCS schemes that have this special property. Security of the interactive AOFE construction relies on the q-Computational and Decisional Hidden Strong Diffie-Hellman assumptions. In this paper, we propose a new construction of interactive AOFE from DCS, where the underlying DCS is standard and does not require any special property. We also propose a new DCS construction. By applying our transformation from DCS to interactive AOFE, we build a concrete interactive AOFE which is secure under more standard number-theoretic assumptions, namely Strong Diffie-Hellman and Decision Linear assumptions, without random oracles. A partial signature of the interactive AOFE contains six group elements, while a full signature contains two only.

Keywords

Optimistic fair exchange ambiguity designated confirmer signature standard model 

References

  1. 1.
    Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In: CCS, pp. 7–17. ACM (1997)Google Scholar
  2. 2.
    Asokan, N., Shoup, V., Waidner, M.: Optimistic Fair Exchange of Digital Signatures (Extended Abstract). In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures. IEEE Journal on Selected Areas in Communication 18(4), 593–610 (2000)CrossRefGoogle Scholar
  4. 4.
    Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols with relaxed set-up assumptions. In: FOCS 2004, pp. 186–195. IEEE Computer Society (2004)Google Scholar
  5. 5.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: CCS, pp. 62–73. ACM (1993)Google Scholar
  6. 6.
    Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Camenisch, J., Michels, M.: Confirmer Signature Schemes Secure against Adaptive Adversaries (Extended Abstract). In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 243–258. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Chaum, D.: Zero-Knowledge Undeniable Signatures. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 458–464. Springer, Heidelberg (1991)Google Scholar
  10. 10.
    Chaum, D.: Designated Confirmer Signatures. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 86–91. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  11. 11.
    Chen, L.: Efficient Fair Exchange with Verifiable Confirmation of Signatures. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 286–299. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Damgård, I.: On Σ-protocols. Course on Cryptologic Protocol Theory. Aarhus University (2009), http://www.daimi.au.dk/~ivan/Sigma.pdf
  13. 13.
    Dodis, Y., Lee, P.J., Yum, D.H.: Optimistic Fair Exchange in a Multi-user Setting. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 118–133. Springer, Heidelberg (2007); also at Cryptology ePrint Archive, Report 2007/182 CrossRefGoogle Scholar
  14. 14.
    Dodis, Y., Reyzin, L.: Breaking and repairing optimistic fair exchange from PODC 2003. In: DRM 2003, pp. 47–54. ACM (2003)Google Scholar
  15. 15.
    Garay, J.A., Jakobsson, M., MacKenzie, P.: Abuse-free optimistic contract signing. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 449–466. Springer, Heidelberg (1999)Google Scholar
  16. 16.
    Gentry, C., Molnar, D., Ramzan, Z.: Efficient Designated Confirmer Signatures Without Random Oracles or General Zero-Knowledge Proofs (Extended Abstract). In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 662–681. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Goldwasser, S., Waisbard, E.: Transformation of Digital Signature Schemes into Designated Confirmer Signature Schemes. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 77–100. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Groth, J.: Fully Anonymous Group Signatures Without Random Oracles. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Heidelberg (2007); also at Cryptology ePrint Archive, Report 2007/186CrossRefGoogle Scholar
  19. 19.
    Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Huang, Q., Wong, D.S., Susilo, W.: A New Construction of Designated Confirmer Signature and Its Application to Optimistic Fair Exchange - (Extended Abstract). In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 41–61. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Huang, Q., Wong, D.S., Susilo, W.: Efficient designated confirmer signature and DCS-based ambiguous optimistic fair exchange. IEEE Transactions on Information Forensics and Security 6(4), 1233–1247 (2011)CrossRefGoogle Scholar
  22. 22.
    Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Ambiguous Optimistic Fair Exchange. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 74–89. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Efficient Optimistic Fair Exchange Secure in the Multi-user Setting and Chosen-Key Model without Random Oracles. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 106–120. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and Their Applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)Google Scholar
  25. 25.
    Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential Aggregate Signatures and Multisignatures Without Random Oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential Aggregate Signatures from Trapdoor Permutations. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  27. 27.
    Michels, M., Stadler, M.: Generic Constructions for Secure and Efficient Confirmer Signature Schemes. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 406–421. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  28. 28.
    Okamoto, T.: Designated Confirmer Signatures and Public-Key Encryption Are Equivalent. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 61–74. Springer, Heidelberg (1994)Google Scholar
  29. 29.
    Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  30. 30.
    Park, J.M., Chong, E.K., Siegel, H.J.: Constructing fair-exchange protocols for e-commerce via distributed computation of RSA signatures. In: PODC 2003, pp. 172–181. ACM (2003)Google Scholar
  31. 31.
    Wang, G., Baek, J., Wong, D.S., Bao, F.: On the Generic and Efficient Constructions of Secure Designated Confirmer Signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 43–60. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  32. 32.
    Wang, G., Xia, F.: A pairing based designated confirmer signature scheme with unified verification. Technical report, School of Computer Science, University of Birmingham (December 2009)Google Scholar
  33. 33.
    Wikström, D.: Designated confirmer signatures revisited. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 342–361. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  34. 34.
    Zhang, F., Chen, X., Wei, B.: Efficient designated confirmer signature from bilinear pairings. In: ASIACCS 2008. pp. 363–368. ACM (2008)Google Scholar

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Qiong Huang
    • 1
  • Duncan S. Wong
    • 2
  • Willy Susilo
    • 3
  1. 1.South China Agricultural UniversityGuangzhouChina
  2. 2.City University of Hong KongHong Kong S.A.R., China
  3. 3.University of WollongongWollongongAustralia

Personalised recommendations