Advertisement

On Homomorphic Encryption and Chosen-Ciphertext Security

  • Brett Hemenway
  • Rafail Ostrovsky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7293)

Abstract

Chosen-Ciphertext (IND-CCA) security is generally considered the right notion of security for a cryptosystem. Because of its central importance much effort has been devoted to constructing IND-CCA secure cryptosystems.

In this work, we consider constructing IND-CCA secure cryptosystems from (group) homomorphic encryption. Our main results give natural and efficient constructions of IND-CCA secure cryptosystems from any homomorphic encryption scheme that satisfies weak cyclic properties, either in the plaintext, ciphertext or randomness space. Our results have the added benefit of being simple to describe and analyze.

Keywords

Homomorphic Encryption Oblivious Transfer Private Information Retrieval Homomorphic Encryption Scheme Randomness Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [AKP10]
    Armknecht, F., Katzenbeisser, S., Peter, A.: Group homomorphic encryption. IACR ePrint Archive 2010/501 (2010)Google Scholar
  2. [BCHK07]
    Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)MathSciNetCrossRefGoogle Scholar
  3. [Ben94]
    Benaloh, J.C.: Dense probabilistic encryption. In: Proceedings of the Workshop on Selected Areas in Cryptography, pp. 120–128 (1994)Google Scholar
  4. [BFOR08]
    Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic Encryption: Definitional Equivalences and Constructions without Random Oracles. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008)Google Scholar
  5. [BGN05]
    Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. [BK05]
    Boneh, D., Katz, J.: Improved Efficiency for CCA-Secure Cryptosystems Built Using Identity-Based Encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 87–103. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. [CHK04]
    Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. [CHK10]
    Cramer, R., Hofheinz, D., Kiltz, E.: A Twist on the Naor-Yung Paradigm and Its Application to Efficient CCA-Secure Encryption from Hard Search Problems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 146–164. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. [CMO00]
    Di Crescenzo, G., Malkin, T., Ostrovsky, R.: Single Database Private Information Retrieval Implies Oblivious Transfer. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 122–138. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. [CS98]
    Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  11. [CS02]
    Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002); Full version available at http://eprint.iacr.org Cryptology ePrint Archive, Report 2001/085CrossRefGoogle Scholar
  12. [DDN91]
    Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: STOC 1991, pp. 542–552 (1991)Google Scholar
  13. [DJ01]
    Damgård, I., Jurik, M.: A Generalisation, a Simplification and Some Applications of Paillier’s Probabilistic Public-key System. In: Kim, K.-C. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. [DMQN09]
    Dowsley, R., Müller-Quade, J., Nascimento, A.C.A.: A CCA2 Secure Public Key Encryption Scheme Based on the McEliece Assumptions in the Standard Model. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 240–251. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. FGK + 10.
    Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More Constructions of Lossy and Correlation-Secure Trapdoor Functions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279–295. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. [Gam85]
    El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  17. [Gen09]
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp. 169–178. ACM, New York (2009)CrossRefGoogle Scholar
  18. [GM84]
    Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28, 270–299 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  19. [GMM07]
    Gertner, Y., Malkin, T., Myers, S.: Towards a Separation of Semantic and CCA Security for Public Key Encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 434–455. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. [HJKS10]
    Haralambiev, K., Jager, T., Kiltz, E., Shoup, V.: Simple and Efficient Public-Key Encryption from Computational Diffie-Hellman in the Standard Model. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 1–18. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. [HLOV11]
    Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy Encryption: Constructions from General Assumptions and Efficient Selective Opening Chosen Ciphertext Security. In: Lee, D.H. (ed.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 70–88. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. [HO12]
    Hemenway, B., Ostrovsky, R.: Extended-DDH and Lossy Trapdoor Functions. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 627–643. Springer, Heidelberg (2012)Google Scholar
  23. [IKO05]
    Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Sufficient Conditions for Collision-Resistant Hashing. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 445–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. [KO97]
    Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database, computationally-private information retrieval. In: FOCS 1997, pp. 364–373. ACM, New York (1997)Google Scholar
  25. [Man98]
    Mann, E.: Private access to distributed information. Master’s thesis, Technion - Israel Institute of Technology (1998)Google Scholar
  26. [MY09]
    Mol, P., Yilek, S.: Chosen-Ciphertext Security from Slightly Lossy Trapdoor Functions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 296–311. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. [NS98]
    Naccache, D., Stern, J.: A new public key cryptosystem based on higher residues. In: CCS 1998: Proceedings of the 5th ACM Conference on Computer and Communications Security, pp. 59–66. ACM Press, New York (1998)CrossRefGoogle Scholar
  28. [NY90]
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC 1990, pp. 427–437 (1990)Google Scholar
  29. [OU98]
    Okamoto, T., Uchiyama, S.: A New Public-Key Cryptosystem as Secure as Factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  30. [Pai99]
    Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  31. [Pei09]
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: STOC 2009: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 333–342. ACM, New York (2009)CrossRefGoogle Scholar
  32. [PW08]
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC 2008: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 187–196. ACM, New York (2008)CrossRefGoogle Scholar
  33. [Reg05]
    Regev, O.: On lattices, learning with errors, random linear codes and cryptography. In: STOC 2005, pp. 84–93. ACM (2005)Google Scholar
  34. [RS91]
    Rackoff, C., Simon, D.R.: Non-interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  35. [RS08]
    Rosen, A., Segev, G.: Efficient lossy trapdoor functions based on the composite residuosity assumption. Cryptology ePrint Archive, Report 2008/134 (2008)Google Scholar
  36. [RS09]
    Rosen, A., Segev, G.: Chosen-Ciphertext Security via Correlated Products. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Brett Hemenway
    • 1
  • Rafail Ostrovsky
    • 2
  1. 1.University of MichiganUSA
  2. 2.UCLAUSA

Personalised recommendations