Advertisement

Constant-Round Multi-party Private Set Union Using Reversed Laurent Series

  • Jae Hong Seo
  • Jung Hee Cheon
  • Jonathan Katz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7293)

Abstract

We introduce the idea of associating a set of elements with a rational function represented using a reversed Laurent series. Using this representation, we propose private set-union protocols in the multi-party setting, assuming an honest majority. Our protocols are the first efficient protocol for private set union with constant round complexity (in both the semi-honest and malicious settings), as well as the first with statistical security (in the semi-honest setting).

Keywords

Random Polynomial Honest Party Malicious Adversary Common Reference String Corrupted Party 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ateniese, G., De Cristofaro, E., Tsudik, G.: (If) Size Matters: Size-Hiding Private Set Intersection. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 156–173. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: 20th Annual ACM Symposium on Theory of Computing (STOC), pp. 1–10. ACM Press (1988)Google Scholar
  4. 4.
    Brickell, J., Shmatikov, V.: Privacy-Preserving Graph Algorithms in the Semi-honest Model. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 236–252. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Camenisch, J.: Proof systems for general statements about discrete logarithms. Technical Report 260, Dept. of Computer Science, ETH Zurich (March 1997)Google Scholar
  6. 6.
    Camenisch, J., Zaverucha, G.M.: Private Intersection of Certified Sets. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 108–127. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient Robust Private Set Intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    De Cristofaro, E., Kim, J., Tsudik, G.: Linear-Complexity Private Set Intersection Protocols Secure in Malicious Model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 213–231. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    De Cristofaro, E., Tsudik, G.: Practical Private Set Intersection Protocols with Linear Complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set Intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Frikken, K.B.: Privacy-Preserving Set Union. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 237–252. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty computations with applications to threshold cryptography. In: 17th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 101–111. ACM Press (1998)Google Scholar
  13. 13.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a completeness theorem for protocols with honest majority. In: 19th Annual ACM Symposium on Theory of Computing (STOC), pp. 218–229. ACM Press (1987)Google Scholar
  14. 14.
    Hazay, C., Lindell, Y.: Efficient Protocols for Set Intersection and Pattern Matching with Security Against Malicious and Covert Adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Hazay, C., Nissim, K.: Efficient Set Operations in the Presence of Malicious Adversaries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 312–331. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Hong, J., Kim, J., Kim, J., Park, K., Cheon, J.: Constant-Round Privacy Preserving Multiset Union, http://eprint.iacr.org/2011/138
  17. 17.
    Jarecki, S., Liu, X.: Efficient Oblivious Pseudorandom Function with Applications to Adaptive OT and Secure Computation of Set Intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Kaltofen, E., Shoup, V.: Subquadratic-time factoring of polynomials over finite fields. Mathematics of Computation 67(223), 1179–1197 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kissner, L., Song, D.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005); See also Technical Report CMU-CS-05-133, Carnegie Mellon UniversityGoogle Scholar
  20. 20.
    Kedlaya, K.S., Umans, C.: Fast modular composition in any characteristic. In: 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 146–155. IEEE computer Society (2008)Google Scholar
  21. 21.
    Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  22. 22.
    Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  23. 23.
    Sang, Y., Shen, H.: Efficient and secure protocols for privacy-preserving set operations. ACM Trans. Information and System Security 13(1) (2009)Google Scholar
  24. 24.
    Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Shoup, V.: A Computational Introduction to Number Theory and Algebra, 2nd edn. Cambridge University Press (2009)Google Scholar
  26. 26.
    Umans, C.: Fast polynomial factorization and modular composition in small characteristic. In: 40th Annual ACM Symposium on Theory of Computing (STOC), pp. 481–490. ACM (2008)Google Scholar

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Jae Hong Seo
    • 1
  • Jung Hee Cheon
    • 2
  • Jonathan Katz
    • 3
  1. 1.National Institute of Information and Communications TechnologyTokyoJapan
  2. 2.ISaC & Dept. of Mathematical SciencesSeoul National UniversitySeoulKorea
  3. 3.Dept. of Computer ScienceUniversity of MarylandMarylandUSA

Personalised recommendations