Leveraging Video Viewing Patterns for Optimal Content Placement

  • K. -W. Hwang
  • D. Applegate
  • A. Archer
  • V. Gopalakrishnan
  • S. Lee
  • V. Misra
  • K. K. Ramakrishnan
  • D. F. Swayne
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7290)


As IP becomes the predominant choice for video delivery, storing the ever increasing number of videos for delivery will become a challenge. In this paper we focus on how to take advantage of user viewing patterns to place content in provider networks to reduce their storage and network utilization. We first characterize user viewing behavior using data collected from a nationally deployed Video-on-Demand service. We provide proof that users watch only a small portion of videos (not just for short clips, but even with full-length movies). We use this information and a highly flexible Mixed Integer Programming (MIP) formulation to solve the placement problem, in contrast to traditional popularity-based placement and caching strategy. We perform detailed simulations using real traces of user viewing sessions (including stream control operations such as Pause, Skip, etc.). Our results show that the use of a segmentbased placement yields substantial savings both in storage as well as network bandwidth. For example, compared to a simple caching scheme using full videos, our MIP-based placement using segments can achieve up to 71% reduction in peak link bandwidth usage.


Video-on-demand content placement user viewing pattern 


  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Sandvine global internet phenomena report (May 2011),
  5. 5.
    Allen, M., Zhao, B., Wolski, R.: Deploying video-on-demand services on cable networks. In: Proceedings of IEEE ICDCS, Toronto, Canada (June 2007)Google Scholar
  6. 6.
    Applegate, D., Archer, A., Gopalakrishnan, V., Lee, S., Ramakrishnan, K.K.: Optimal content placement for a large-scale vod system. In: CoNEXT. ACM (2010)Google Scholar
  7. 7.
    Baev, I.D., Rajaraman, R., Swamy, C.: Approximation algorithms for data placement problems. SIAM J. Computing 38(4), 1411–1429 (2008)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Borst, S., Gupta, V., Walid, A.: Distributed caching algorithms for content distribution networks. In: Proceeding of IEEE INFOCOM (2010)Google Scholar
  9. 9.
    Gopalakrishnan, V., Jana, R., Ramakrishnan, K.K., Swayne, D.F., Vaishampayan, V.A.: Understanding couch potatoes: Modeling interactive usage of iptv at large scale. In: Proceedings of ACM IMC (2011)Google Scholar
  10. 10.
    Guo, L., Tan, E., Chen, S., Xiao, Z., Zhang, X.: Does internet media traffic really follow zipf-like distribution? In: Proceedings of ACM SIGMETRICS (2007)Google Scholar
  11. 11.
    Huang, C., Li, J., Ross, K.W.: Can internet video-on-demand be profitable? In: Proceedings of ACM Sigcomm (2007)Google Scholar
  12. 12.
    Huang, Y., Fu, T.Z.J., Chiu, D.-m., Lui, J.C.S., Huang, C.: Challenges, design and analysis of a large-scale p2p vod system. In: ACM SIGCOMM (2008)Google Scholar
  13. 13.
    Park, S.H., Lim, E.J., Chung, K.D.: Popularity-based partial caching for vod systems using a proxy server. In: Proceedings of IEEE International Parallel and Distributed Processing Symposium (2001)Google Scholar
  14. 14.
    Qiu, L., Padmanabhan, V.N., Voelker, G.M.: On the placement of web server replicas. In: Proceeding of IEEE INFOCOM (2001)Google Scholar
  15. 15.
    Sen, S., Rexford, J., Towsley, D.: Proxy prefix caching for multimedia streams. In: Proceedings of IEEE INFOCOM (1999)Google Scholar
  16. 16.
    Valancius, V., Laoutaris, N., Massoulié, L., Diot, C., Rodriguez, P.: Greening the internet with nano data centers. In: Proceedings of ACM CoNEXT (2009)Google Scholar
  17. 17.
    Wang, B., Sen, S., Adler, M., Towsley, D.: Optimal proxy cache allocation for efficient streaming media distribution. In: Proceedings of IEEE INFOCOM (2002)Google Scholar
  18. 18.
    Wu, J., Li, B.: Keep cache replacement simple in peer-assisted vod systems. In: Proceedings of IEEE INFOCOM, pp. 2591–2595 (April 2009)Google Scholar
  19. 19.
    Wu, K.L., Yu, P.S., Wolf, J.L.: Segment-based proxy caching of multimedia streams. In: World Wide Web, Hong Kong, pp. 36–44 (2001)Google Scholar
  20. 20.
    Yin, H., Liu, X., Qiu, F., Xia, N., Lin, C., Zhang, H., Sekar, V., Min, G.: Inside the bird’s nest: measurements of large-scale live VoD from the 2008 olympics. In: Proceedings of the ACM SIGCOMM Internet Measurement Conference (2009)Google Scholar
  21. 21.
    Yin, H., Liu, X., Zhan, T., Sekar, V., Qiu, F., Lin, C., Zhang, H., Li, B.: Design and deployment of a hybrid CDN-P2P system for live video streaming: experiences with LiveSky. In: Proceedings of ACM Multimedia, pp. 25–34 (2009)Google Scholar
  22. 22.
    Yu, H., Zheng, D., Zhao, B.Y., Zheng, W.: Understanding user behavior in large-scale video-on-demand systems. In: Proceedings ACM SIGOPS/EuroSys (2006)Google Scholar
  23. 23.
    Zhang, Z.L., Wang, Y., Du, D.H.C., Su, D.: Video Staging: A Proxy-Server-Based Approach to End-to-End Video Delivery over Wide-Area Networks. IEEE/ACM Transactions on Networking 8(4) (August 2000)Google Scholar
  24. 24.
    Zhou, X., Xu, C.Z.: Optimal video replication and placement on a cluster of video-on-demand servers. In: Proc. IEEE ICPP (2002)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • K. -W. Hwang
    • 1
  • D. Applegate
    • 2
  • A. Archer
    • 2
  • V. Gopalakrishnan
    • 2
  • S. Lee
    • 2
  • V. Misra
    • 1
  • K. K. Ramakrishnan
    • 2
  • D. F. Swayne
    • 2
  1. 1.Columbia UniversityNew YorkUSA
  2. 2.AT&T Labs ResearchFlorham ParkUSA

Personalised recommendations